Skip to main content
Log in

Urea-induced interfacial engineering enabling highly reversible aqueous zinc-ion battery

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Aqueous zinc-ion batteries (AZIBs) have been regarded as prospective rechargeable energy storage devices because of the high theoretical capacity and low redox potential of Zn metal. However, the uncontrollable formation of dendrites and the water-induced side reactions at the Zn/electrolyte interface, and the poor reversibility under a high current density (> 2 mA·cm−2) and large area capacity (> 2 mAh·cm−2) still limit the practical applications of AZIBs. Therefore, a strategy that can overcome these difficulties is urgently needed. Here, we introduce an environmentally friendly and low-cost additive, namely urea, to the electrolyte of AZIBs to induce uniform Zn deposition and suppress the side reactions. Measurements of the adsorption behavior, electrochemical characterization, and observations of the morphology revealed the interfacial modification induced by urea on the Zn/electrolyte interface, demonstrating its huge potential in AZIBs. Consequently, the long-term cycling stability (over 2100 h) of a Zn/Zn symmetric cell under a high current density of 5 mA·cm−2 and a capacity of 5 mAh·cm−2 was achieved with a 1 mol·L−1 ZnSO4 electrolyte with the urea additive. Additionally, the assembled Zn/NH4V4O10 full cell with urea exhibited excellent cycling performance and an outstanding average Coulombic efficiency of 99.98%. These results indicate that this is a low-cost and effective additive strategy for realizing highly reversible AZIBs.

Graphical abstract

摘要

由于锌金属具有较高的理论容量和较低的氧化还原电势, 水系锌离子电池成为一种极具前景的可充电储能装置。然而, 锌负极/电解液界面上不可控的枝晶生长和副反应, 以及锌负极在大电流密度(> 2 mA·cm−2)和大面沉积量(> 2 mAh·cm−2)下较差的可逆性严重限制了它的实际应用。因此, 迫切需要开发一种能够克服以上缺陷的策略。本文将一种环保、低成本的添加剂——尿素加入1 mol·L−1 ZnSO4电解液中, 用以诱导锌的均匀沉积并抑制副反应发生。添加剂吸附行为的测定、电池电化学性能的表征和锌负极形貌的观察共同揭示了尿素添加剂在Zn/ZnSO4界面上引起的界面修饰效果, 展现了其巨大的应用潜力。在5 mA·cm−2的电流密度和5 mAh·cm−2的面沉积量下, 使用尿素添加剂的Zn/Zn对称电池可稳定循环超2100 h。所组装的Zn/NH4V4O10全电池也具有良好的循环性能和99.98%的平均库仑效率。以上结果表明, 使用尿素作为电解液添加剂是一种成本低廉且行之有效的界面修饰策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura JA, Xu K, Wang C. Highly reversible zinc metal anode for aqueous batteries. Nat mater. 2018;17(6):543. https://doi.org/10.1038/s41563-018-0063-z.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Dong N, Zhang F, Pan H. Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem Sci. 2022;13(28):8243. https://doi.org/10.1039/D2SC01818G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci. 2019;12(11):3288. https://doi.org/10.1039/C9EE02526J.

    Article  CAS  Google Scholar 

  4. Liu Y, Umar A, Wu X. Metal-organic framework derived porous cathode materials for hybrid zinc ion capacitor. Rare Met. 2022;41(9):2985. https://doi.org/10.1007/s12598-022-02030-0.

  5. Su ZH, Wang RH, Huang JH, Sun R, Qin ZX, Zhang YF, Fan HS. Silver vanadate (Ag0.33V2O5) nanorods from Ag intercalated vanadium pentoxide for superior cathode of aqueous zinc-ion batteries. Rare Met. 2022;41(8):2844. https://doi.org/10.1007/s12598-022-02026-w.

  6. Guo M, Zhu XY, Li MD, Zhu JL, Huang GJ, Li YY. Electrostatic Self-Assembly Preparation of Three-Dimensional Graphene Coated Red Phosphorus for Lithium-Ion Battery Anode. Chin J Rare Met. 2022;46(8):1048. https://doi.org/10.1126/sciadv.aba4098.

  7. Guo YM, Zhang LJ. Research Progress in Synthesis and Electrochemical Performance of Cobalt Sulfide as Anode Material for Secondary Batteries. Chin J Rare Met. 2022;46(2):227. https://doi.org/10.13373/j.cnki.cjrm.XY20050006.

  8. Hao Z, Zhang Y, Hao Z, Li G, Lu Y, Jin S, Yang G, Zhang S, Yan Z, Zhao Q, Chen J. Metal anodes with ultrahigh reversibility enabled by the closest packing crystallography for sustainable batteries. Adv Mater. 2023;35(9). https://doi.org/10.1002/adma.202209985.

  9. Wang T, Li C, Xie X, Lu B, He Z, Liang S, Zhou J. Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano. 2020;14(12):16321. https://doi.org/10.1021/acsnano.0c07041.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020;49(13):4203. https://doi.org/10.1039/C9CS00349E.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang T, Tang Y, Guo S, Cao X, Pan A, Fang G, Zhou J, Liang S. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ Sci. 2020;13(12):4625. https://doi.org/10.1039/D0EE02620D.

    Article  CAS  Google Scholar 

  12. Hou JB, Zhang K, Xiao JH, Xu ZQ, Gao WJ, Gao XY, Zhou SK, Jiao ZZ, Yi MR, Yin YH, Wu ZP. Modified tungsten oxide as a binder-free anode in lithium-ion battery for improving electrochemical stability. Tungsten.2022;4(4):356. https://doi.org/10.1007/s42864-022-00162-5.

  13. Wu S, Hu Z, He P, Ren L, Huang J, Luo J. Crystallographic engineering of Zn anodes for aqueous batteries. eScience. 2023. https://doi.org/10.1016/j.esci.2023.100120.

  14. Zheng J, Huang Z, Ming F, Zeng Y, Wei B, Jiang Q, Qi Z, Wang Z, Liang H. Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries. Small. 2022;18(21):2200006. https://doi.org/10.1002/smll.202200006.

    Article  CAS  Google Scholar 

  15. Gan Y, Wang C, Li J, Zheng J, Wan H, Wang H. Stability optimization strategy of aqueous zinc ion batteries. Chin J Rare Metals. 2022;46(6):753. https://doi.org/10.13373/j.cnki.cjrm.XY21100036.

  16. Wang D, Li Q, Zhao Y, Hong H, Li H, Huang Z, Liang G, Yang Q, Zhi C. Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv Energy Mater. 2022;12(9):2102707. https://doi.org/10.1002/aenm.202102707.

    Article  CAS  Google Scholar 

  17. Yu F, Wang Y, Liu Y, Hui HY, Wang FX, Li JF, Wang Q. An aqueous rechargeable zinc-ion battery on basis of an organic pigment. Rare Met. 2022;41(7):2230. https://doi.org/10.1007/s12598-021-01941-8.

    Article  CAS  Google Scholar 

  18. Yang J, Zhao R, Wang Y, Hu Z, Wang Y, Zhang A, Wu C, Bai Y. Insights on artificial interphases of Zn and electrolyte: protection mechanisms, constructing techniques, applicability, and prospective. Adv Funct Mater. 2023:2213510. https://doi.org/10.1002/adfm.202213510.

  19. Qian H, Liu Y, Chen HX, Feng KJ, Jia KX, Pan KM, Wang GX, Huang T, Pang XC, Zhang QB. Emerging bismuth-based materials: From fundamentals to electrochemical energy storage applications. Energy Stor Mater. 2023; 58(1): 232. https://doi.org/10.1016/j.ensm.2023.03.023.

  20. Zhai P, Zhai X, Jia Z, Zhang W, Pan K, Liu Y. Inhibiting corrosion and side reactions of zinc metal anode by nano-CaSiO3 coating towards high-performance aqueous zinc-ion batteries. Nanotechnology. 2023;34(8): 085402. https://doi.org/10.1088/1361-6528/aca1cd.

    Article  ADS  Google Scholar 

  21. Shi W, Song Z, Wang J, Li Q, An Q. Phytic acid conversion film interfacial engineering for stabilizing zinc metal anode. Chem Eng J. 2022;446(4): 137295. https://doi.org/10.1016/j.cej.2022.137295.

    Article  CAS  Google Scholar 

  22. Shi X, Wang J, Yang F, Liu X, Yu Y, Lu X. Metallic zinc anode working at 50 and 50 mAh·cm−2 with high depth of discharge via electrical double layer reconstruction. Adv Funct Mater. 2023;33(7):2211917. https://doi.org/10.1002/adfm.202211917.

    Article  CAS  Google Scholar 

  23. Tian Y, Chen S, He Y, Chen Q, Zhang L, Zhang J. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res Energy. 2022;1(3):9120025. https://doi.org/10.26599/NRE.2022.9120025.

  24. Feng X, Li P, Yin J, Gan Z, Gao Y, Li M, Cheng Y, Xu X, Su Y, Ding S. Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives. ACS Energy Lett. 2023;8(2):1192. https://doi.org/10.1021/acsenergylett.2c02455.

    Article  CAS  Google Scholar 

  25. Wang B, Zheng R, Yang W, Han X, Hou C, Zhang Q, Li Y, Li K, Wang H. Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv Funct Mater. 2022;32(23):2112693. https://doi.org/10.1002/adfm.202112693.

    Article  CAS  Google Scholar 

  26. Sun P, Ma L, Zhou W, Qiu M, Wang Z, Chao D, Mai W. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int Ed. 2021;60(33):18247. https://doi.org/10.1002/anie.202105756.

    Article  CAS  Google Scholar 

  27. Feng D, Cao F, Hou L, Li T, Jiao Y, Wu P. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small. 2021;17(42):2103195. https://doi.org/10.1002/smll.202103195.

    Article  CAS  Google Scholar 

  28. Jin Y, Han KS, Shao Y, Sushko M, Xiao J, Pan H, Liu W. Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv Funct Mater. 2020;30:2003932. https://doi.org/10.1002/adfm.202003932.

    Article  CAS  Google Scholar 

  29. Zhang H, Guo R, Li S, Liu C, Li H, Zou G, Hu J, Hou H, Ji X. Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy. 2022;92: 106752. https://doi.org/10.1016/j.nanoen.2021.106752.

    Article  CAS  Google Scholar 

  30. Zhao R, Yang Y, Liu G, Zhu R, Huang J, Chen Z, Gao Z, Chen X, Qie L. Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv Funct Mater. 2021;31(2):2001867. https://doi.org/10.1002/adfm.202001867.

    Article  CAS  Google Scholar 

  31. Chen P, Yuan X, Xia Y, Zhang Y, Fu L, Liu L, Yu N, Huang Q, Wang B, Hu X, Wu Y, van Ree T. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv Sci. 2021;8(11):2100309. https://doi.org/10.1002/advs.202100309.

    Article  CAS  Google Scholar 

  32. Zhu Y, Yin J, Zheng X, Emwas A-H, Lei Y, Mohammed OF, Cui Y, Alshareef HN. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ Sci. 2021;14(8):4463. https://doi.org/10.1039/D1EE01472B.

    Article  CAS  Google Scholar 

  33. Xu W, Zhao K, Huo W, Wang Y, Yao G, Gu X, Cheng H, Mai L, Hu C, Wang X. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy. 2019;62(1):275. https://doi.org/10.1016/j.nanoen.2019.05.042.

    Article  CAS  Google Scholar 

  34. Wu Z, Li M, Tian Y, Chen H, Zhang S-J, Sun C, Li C, Kiefel M, Lai C, Lin Z, Zhang S. Cyclohexanedodecol-assisted interfacial engineering for robust and high-performance zinc metal anode. Nano-Micro Lett. 2022;14(1):110. https://doi.org/10.1007/s40820-022-00846-0.

    Article  CAS  ADS  Google Scholar 

  35. Wu R, Yuan HP, Liu YR, Hou ZY, Li ZN, Wang SM, Jiang LJ, Hao L. Effect of carbon coating on electrochemical properties of AB3.5-type La–Y–Ni-based hydrogen storage alloys. J Rare Earths. 2022; 40(8):1264. https://doi.org/10.1016/j.jre.2021.06.005.

  36. Deng W, Xu Z, Wang X. High-donor electrolyte additive enabling stable aqueous zinc-ion batteries. Energy Stor Mater. 2022;52:52. https://doi.org/10.1016/j.ensm.2022.07.032.

    Article  Google Scholar 

  37. Lu H, Zhang X, Luo M, Cao K, Lu Y, Xu BB, Pan H, Tao K, Jiang Y. Amino acid-induced interface charge engineering enables highly reversible Zn anode. Adv Funct Mater. 2021;31(45):2103514. https://doi.org/10.1002/adfm.202103514.

    Article  CAS  Google Scholar 

  38. Zhang Q, Luan J, Huang X, Wang Q, Sun D, Tang Y, Ji X, Wang H. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat Commun. 2020;11(1):3961. https://doi.org/10.1038/s41467-020-17752-x.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Hu N, Qin H, Chen X, Huang Y, Xu J, He H. Tannic acid assisted metal–chelate interphase toward highly stable Zn metal anodes in rechargeable aqueous zinc-ion batteries. Front Chem. 2022;10(1): 981623. https://doi.org/10.3389/fchem.2022.981623.eCollection2022.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Cui J, Liu X, Xie Y, Wu K, Wang Y, Liu Y, Zhang J, Yi J, Xia Y. Improved electrochemical reversibility of Zn plating/stripping: a promising approach to suppress water-induced issues through the formation of H-bonding. Mater Today Energy. 2020;18: 100563. https://doi.org/10.1016/j.mtener.2020.100563.

    Article  CAS  Google Scholar 

  41. Han D, Wang Z, Lu H, Li H, Cui C, Zhang Z, Sun R, Geng C, Liang Q, Guo X, Mo Y, Zhi X, Kang F, Weng Z, Yang QH. A self-regulated interface toward highly reversible aqueous zinc batteries. Adv Energy Mater. 2022;12(9):2102982. https://doi.org/10.1002/aenm.202102982.

    Article  CAS  Google Scholar 

  42. Hao J, Long J, Li B, Li X, Zhang S, Yang F, Zeng X, Yang Z, Pang WK, Guo Z. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv Funct Mater. 2019;29(34):1903605. https://doi.org/10.1002/adfm.201903605.

    Article  CAS  Google Scholar 

  43. Zhang SJ, Hao J, Luo D, Zhang PF, Zhang B, Davey K, Lin Z, Qiao SZ. Dual-function electrolyte additive for highly reversible Zn anode. Adv Energy Mater. 2021;11(37):2102010. https://doi.org/10.1002/aenm.202102010.

    Article  CAS  Google Scholar 

  44. Qin R, Wang Y, Zhang M, Wang Y, Ding S, Song A, Yi H, Yang L, Song Y, Cui Y, Liu J, Wang Z, Li S, Zhao Q, Pan F. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy. 2021;80: 105478. https://doi.org/10.1016/j.nanoen.2020.105478.

    Article  CAS  Google Scholar 

  45. Xu J, Lv W, Yang W, Jin Y, Jin Q, Sun B, Zhang Z, Wang T, Zheng L, Shi X, Sun B, Wang G. In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano. 2022;16(7):11392. https://doi.org/10.1021/acsnano.2c05285.

    Article  CAS  PubMed  Google Scholar 

  46. Yang X, Li W, Chen Z, Tian M, Peng J, Luo J, Su Y, Zou Y, Weng G, Shao Y, Dou S, Sun J. Synchronous dual electrolyte additive sustains Zn metal anode with 5600 h Lifespan. Angew Chem Int Ed. 2023;62(10):202218454. https://doi.org/10.1002/anie.202218454.

    Article  CAS  Google Scholar 

  47. Huang C, Zhao X, Liu S, Hao Y, Tang Q, Hu A, Liu Z, Chen X. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv Mater. 2021;33(38):2100445. https://doi.org/10.1002/adma.202100445.

    Article  CAS  Google Scholar 

  48. Yang F, Yuwono JA, Hao J, Long J, Yuan L, Wang Y, Liu S, Fan Y, Zhao S, Davey K, Guo Z. Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc anode performance. Adv Mater. 2022;34(45):2206754. https://doi.org/10.1002/adma.202206754.

    Article  CAS  Google Scholar 

  49. Zeng X, Xie K, Liu S, Zhang S, Hao J, Liu J, Pang WK, Liu J, Rao P, Wang Q, Mao J, Guo Z. Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA·cm−2 and 30 mAh·cm−2, Energy Environ. Sci. 2021;14(11):5947. https://doi.org/10.1039/D1EE01851E.

    Article  CAS  Google Scholar 

  50. Miao Z, Liu Q, Wei W, Zhao X, Du M, Li H, Zhang F, Hao M, Cui Z, Sang Y, Wang X, Liu H, Wang S. Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy. 2022;97: 107145. https://doi.org/10.1016/j.nanoen.2022.107145.

    Article  CAS  Google Scholar 

  51. Zhou S, Wang Y, Lu H, Zhang Y, Fu C, Usman I, Liu Z, Feng M, Fang G, Cao X, Liang S, Pan A. Anti-corrosive and Zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv Funct Mater. 2021;31(46):2104361. https://doi.org/10.1002/adfm.202104361.

    Article  CAS  Google Scholar 

  52. Xie K, Ren K, Sun C, Yang S, Tong M, Yang S, Liu Z, Wang Q. Toward stable zinc-ion batteries: use of a chelate electrolyte additive for uniform zinc deposition. ACS Appl Energy Mater. 2022;5(4):4170. https://doi.org/10.1021/acsaem.1c03558.

    Article  CAS  Google Scholar 

  53. Li TC, Lim Y, Li XL, Luo S, Lin C, Fang D, Xia S, Wang Y, Yang HY. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv Energy Mater. 2022;12(15):2103231. https://doi.org/10.1002/aenm.202103231.

    Article  CAS  Google Scholar 

  54. Gao J, Xie X, Liang S, Lu B, Zhou J. Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-micro lett. 2021;13(1):69. https://doi.org/10.1007/s40820-021-00595-6.

    Article  CAS  ADS  Google Scholar 

  55. Fang ZK, Wang H, Liu JW, Ouyang LZ, Zhu M. Effect of scandium and zirconium alloying on microstructure and gaseous hydrogen storage properties of YFe3. J Rare Earths. 2022; 40(3):467. https://doi.org/10.1016/j.jre.2020.11.015.

  56. Li Q, Zhao Y, Mo F, Wang D, Yang Q, Huang Z, Liang G, Chen A, Zhi C. Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat. 2020;2(3):12035. https://doi.org/10.1002/eom2.12035.

    Article  CAS  Google Scholar 

  57. Shang Y, Kundu D. Understanding and performance of the zinc anode cycling in aqueous zinc-ion batteries and a roadmap for the future. Batteries Supercaps. 2022;5(5):202100394. https://doi.org/10.1002/batt.202100394.

    Article  CAS  Google Scholar 

  58. Tao F, Feng K, Liu Y, Ren J, Xiong Y, Li C, Ren F. Suppressing interfacial side reactions of zinc metal anode via isolation effect toward high-performance aqueous zinc-ion batteries. Nano Res. 2022;16(5):6789. https://doi.org/10.1007/s12274-022-5270-x.

    Article  CAS  ADS  Google Scholar 

  59. Yan M, Xu C, Sun Y, Pan H, Li H. Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy. 2021;82: 105739. https://doi.org/10.1016/j.nanoen.2020.105739.

    Article  CAS  Google Scholar 

  60. Tang B, Zhou J, Fang G, Liu F, Zhu C, Wang C, Pan A, Liang S. Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J Mater Chem A. 2019;7(3):940. https://doi.org/10.1039/C8TA09338E.

    Article  CAS  Google Scholar 

  61. Han M, Huang J, Xie X, Li TC, Huang J, Liang S, Zhou J, Fan HJ. Hydrated eutectic electrolyte with ligand-oriented solvation shell to boost the stability of zinc battery. Adv Funct Mater. 2022;32(25):2110957. https://doi.org/10.1002/adfm.202110957.

    Article  CAS  Google Scholar 

  62. Zhu Z, Lin Z, Sun Z, Zhang P, Li C, Dong R, Mi H. Deciphering H+/Zn2+ co-intercalation mechanism of MOF-derived 2D MnO/C cathode for long cycle life aqueous zinc-ion batteries. Rare Met. 2022;41(11):3729. https://doi.org/10.1007/s12598-022-02088-w.

Download references

Acknowledgements

This study was financially supported by the Key Science and Technology Program of Henan Province (Nos. 212102210219 and 232102241020), the Ph.D. Research Startup Foundation of Henan University of Science and Technology (No. 400613480015), and the Postdoctoral Research Startup Foundation of Henan University of Science and Technology (No. 400613554001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1129 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, BR., Li, QA., Liu, Y. et al. Urea-induced interfacial engineering enabling highly reversible aqueous zinc-ion battery. Rare Met. 43, 1599–1609 (2024). https://doi.org/10.1007/s12598-023-02541-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02541-4

Keywords

Navigation