Skip to main content
Log in

Ultra-high-rate Bi anode encapsulated in 3D lignin-derived carbon framework for sodium-ion hybrid capacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Bismuth (Bi), as an alloy-based anode material, has attracted much attention in the development of sodium-ion hybrid capacitors (SIHCs) due to its high theoretical capacity. However, the volume expansion of the Bi-based anode during the sodiation/desodiation process results in limited rate capability. In the present work, a porous Bi-based composite was constructed by a one-step hydrothermal method, and Bi was encapsulated in lignin-derived nitrogen-doped porous carbon (Bi@LNPC) after carbonization. The obtained Bi nanoparticles could effectively adapt to the strain and shorten the diffusion distance of Na+. In addition, porous carbon skeleton provides a rigid conductive network for electronic transportation. Therefore, the assembled sodium-ion half-cell with Bi@LNPC anode shows ultra-high-rate capability. When the current density was enhanced from 0.1 to 50 A·g−1, the specific capacity decreased slightly from 351.5 to 342.8 mAh·g−1. Even at an extremely high current density of 200 A·g−1, it retains 81.3% capacity retention when compared to a current density of 1 A·g−1. The SIHCs assembled by Bi@LNPC show a high energy density of 63 Wh·kg−1. This work provides an effective method for developing high-rate Bi anode materials for sodium-ion hybrid capacitors (SIHCs) and sodium-ion batteries (SIBs).

Graphical abstract

摘要

铋作为一种合金型负极材料具有较高的理论容量, 在钠离子电池开发中倍受关注。然而, 铋在脱/嵌钠过程中体积严重膨胀, 导致倍率性能受限。本研究通过一步水热法构建了一种多孔Bi/C基复合材料, 经过碳化将铋封装在木质素衍生氮掺杂多孔炭中 (Bi@LNPC), 得到的纳米铋球能够有效地适应应变, 缩短钠离子迁移距离。此外, 多孔碳为电子传输提供刚性导电网络。由此, 由Bi@LNPC负极组装钠离子半电池表现了高倍率性能。电流密度从0.1增加到50 A·g−1, 比容量从351.5略微下降到342.8 mAh·g−1。即使在200 A·g−1的极高电流密度下, 与1 A·g−1的电流密度相比, 具有81.3%的容量保有率。由Bi@LNPC负极组装钠离子混合电容器表现了较高的能量密度63 Wh·kg−1。本工作为开发钠离子电容器和钠离子电池的高倍率铋负极材料提供一种有效的方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jian WB, Zhang WL, Wu BC, Wei XE, Liang WL, Zhang XS, Wen FW, Zhao L, Yin J, Lu K, Qiu XQ. Enzymatic hydrolysis lignin-derived porous carbons through ammonia activation: activation mechanism and charge storage mechanism. ACS Appl Mater Interfaces. 2022;14(4):5425. https://doi.org/10.1021/acsami.1c22576.

    Article  CAS  PubMed  Google Scholar 

  2. Sun YY, Li SQ, Wang CR, Qian YX, Zheng SY, Yuan T. Research progress layered transition metal oxide cathode materials for sodium ion batteries. Chin J Rare Met. 2022;46(6):776. https://doi.org/10.13373/j.cnki.cjrm.XY22020014.

  3. Xiao Y, Wang HR, Hu HY, Zhu YF, Li S, Li JY, Wu XW, Chou SL. Formulating high-rate and long-cycle heterostructured layered oxide cathodes by local chemistry and orbital hybridization modulation for sodium-ion batteries. Adv Mater. 2022;34(33):2202695. https://doi.org/10.1002/adma.202202695.

    Article  CAS  Google Scholar 

  4. Dong SY, Wu YL, Lv N, Ren RQ, Huang L. Porous sodium titanate nanofibers for high energy quasi-solid-state sodium-ion hybrid capacitors. Rare Met. 2022;41(7):2453. https://doi.org/10.1007/s12598-022-02002-4.

    Article  CAS  Google Scholar 

  5. Sun JH, Sadd M, Edenborg P, Grönbeck H, Thiesen PH, Xia ZY, Quintano V, Qiu R, Matic A, Palermo V. Real-time imaging of Na+ reversible intercalation in “Janus” graphene stacks for battery applications. Sci Adv. 2021;7(22):eabf0812. https://doi.org/10.1126/sciadv.abf0812.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Ramachandran K, Subburam G, Liu XH, Huang MG, Xu C, Ng DHL, Cui YX, Li GC, Qiu JX, Wang C, Lian JB. Nitrogen-doped porous carbon nanofoams with enhanced electrochemical kinetics for superior sodium-ion capacitor. Rare Met. 2022;41(7):2481. https://doi.org/10.1007/s12598-022-01992-5.

    Article  CAS  Google Scholar 

  7. Lei KX, Wang CC, Liu LJ, Luo YW, Mu CN, Li FJ, Chen J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed. 2018;57(17):4687. https://doi.org/10.1002/anie.201801389.

    Article  CAS  Google Scholar 

  8. Sun XZ, Wang CL, Gong Y, Gu L, Chen QW, Yu Y. A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage. Small. 2018;14(35):1802218. https://doi.org/10.1002/smll.201802218.

    Article  CAS  Google Scholar 

  9. Li WH, Hu SH, Luo XY, Li ZL, Sun XZ, Li MS, Liu FF, Yu Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater. 2017;29(16):1605820. https://doi.org/10.1002/adma.201605820.

    Article  CAS  Google Scholar 

  10. Wu TJ, Zhang CY, Hou HS, Ge P, Zou GQ, Xu W, Li SM, Huang ZD, Guo TX, Jing MJ, Ji XB. Dual functions of potassium antimony(III)-tartrate in tuning antimony/carbon composites for long-life Na-ion batteries. Adv Funct Mater. 2018;28(10):1705744. https://doi.org/10.1002/adfm.201705744.

    Article  CAS  Google Scholar 

  11. Xiong PX, Bai PX, Tu SB, Cheng MR, Zhang JF, Sun J, Xu YH. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small. 2018;14(33):1802140. https://doi.org/10.1002/smll.201802140.

    Article  CAS  Google Scholar 

  12. Zhou XS, Yu L, Yu XY, Lou XW. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv Energy Mater. 2016;6(22):1601177. https://doi.org/10.1002/aenm.201601177.

    Article  CAS  ADS  Google Scholar 

  13. Wang CC, Wang L, Li F, Cheng F, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater. 2017;29(35):1702212. https://doi.org/10.1002/adma.201702212.

    Article  CAS  Google Scholar 

  14. Zhang Q, Mao JF, Pang WK, Zheng T, Sencadas V, Chen YZ, Liu YJ, Guo ZP. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater. 2018;8(15):1703288. https://doi.org/10.1002/aenm.201703288.

    Article  CAS  Google Scholar 

  15. Yin H, Li QW, Cao ML, Zhang W, Zhao H, Li C, Huo K, Zhu MQ. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017;10(6):2156. https://doi.org/10.1007/s12274-016-1408-z.

    Article  CAS  Google Scholar 

  16. Zhou J, Chen JC, Chen MX, Wang J, Liu XZ, Wei B, Wang ZC, Li JJ, Gu L, Zhang QH, Wang H, Guo L. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv Mater. 2019;31(12):1807874. https://doi.org/10.1002/adma.201807874.

    Article  CAS  Google Scholar 

  17. Yang H, Xu R, Yao Y, Ye SF, Zhou XF, Yu Y. Multicore–shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater. 2019;29(13):1809195. https://doi.org/10.1002/adfm.201809195.

    Article  CAS  Google Scholar 

  18. Yang FH, Yu F, Zhang ZA, Zhang K, Lai YQ, Li J. Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem Eur J. 2016;22(7):2333. https://doi.org/10.1002/chem.201503272.

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, He XJ, Chen HM, Huang SP, Wei MD. N-doped carbon encapsulating Bi nanoparticles derived from metal-organic frameworks for high-performance sodium-ion batteries. J Mater Chem A. 2021;9(38):22048. https://doi.org/10.1039/D1TA06558K.

    Article  CAS  Google Scholar 

  20. Xiong PX, Bai PX, Li A, Li BF, Cheng MR, Chen YP, Huang SP, Jiang Q, Bu X-H, Xu YH. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv Mater. 2019;31(48):1904771. https://doi.org/10.1002/adma.201904771.

    Article  CAS  Google Scholar 

  21. Cai R, Zhang WQ, Zhou JH, Yang KS, Sun LF, Yang L, Ran LG, Shao RW, Fukuda T, Tan GQ, Liu HD, Wan JY, Zhang QB, Dong LX. Unraveling atomic-scale origins of selective Ionic transport pathways and sodium-ion storage mechanism in Bi2S3 anodes. Small Methods. 2022;6(11):2200995. https://doi.org/10.1002/smtd.202200995.

    Article  CAS  Google Scholar 

  22. Zhang XS, Qiu XQ, Lin JX, Lin ZH, Sun SR, Yin J, Alshareef HN, Zhang WL. Structure and interface engineering of ultrahigh-rate 3D bismuth anodes for sodium-ion batteries. Small. 2023. https://doi.org/10.1002/smll.202302071.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xue P, Wang NN, Fang ZW, Lu ZX, Xu X, Wang L, Du Y, Ren XC, Bai ZC, Dou SX, Yu GH. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a Long cycling and high rate anode for sodium-ion batteries. Nano Lett. 2019;19(3):1998. https://doi.org/10.1021/acs.nanolett.8b05189.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Fang YJ, Yu XY, Lou XW. Bullet-like Cu9S5 Hollow particles coated with nitrogen-doped carbon for sodium-ion batteries. Angew Chem Int Ed. 2019;58(23):7744. https://doi.org/10.1002/anie.201902988.

    Article  CAS  Google Scholar 

  25. Fang YJ, Luan DY, Chen Y, Gao SY, Lou XW. Rationally designed three-jayered Cu2S@Carbon@MoS2 hierarchical nanoboxes for efficient sodium storage. Angew Chem Int Ed. 2020;59(18):7178. https://doi.org/10.1002/anie.201915917.

    Article  CAS  Google Scholar 

  26. Liang K, Ren YR. Stabilization of Sb nanoparticles using metal-organic frameworks to obtain stable performance of anode material for sodium-ion batteries. Rare Met. 2022;41(5):1406. https://doi.org/10.1007/s12598-021-01924-9.

    Article  MathSciNet  CAS  Google Scholar 

  27. Wang SC, Bai JX, Innocent MT, Wang QQ, Xiang HX, Tang JG, Zhu MF. Lignin-based carbon fibers: formation, modification and potential applications. Green Energy Environ. 2022;7(4):578. https://doi.org/10.1016/j.gee.2021.04.006.

    Article  CAS  Google Scholar 

  28. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344(6185):1246843. https://doi.org/10.1126/science.1246843.

    Article  CAS  PubMed  Google Scholar 

  29. Liu HY, Xu T, Liu K, Zhang M, Liu W, Li H, Du HS, Si CL. Lignin-based electrodes for energy storage application. Ind Crops Prod. 2021;165: 113425. https://doi.org/10.1016/j.indcrop.2021.113425.

    Article  CAS  Google Scholar 

  30. Sun ZZ, Dai LC, Lai PH, Shen F, Shen F, Zhu WK. Air oxidation in surface engineering of biochar-based materials: a critical review. Carbon Res. 2022;1(1):32. https://doi.org/10.1007/s44246-022-00031-3.

    Article  Google Scholar 

  31. Zhang WL, Yin J, Jian WB, Wu Y, Chen LH, Sun ML, Schwingenschlögl U, Qiu XQ, Alshareef HN. Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy. 2022;103: 107827. https://doi.org/10.1016/j.nanoen.2022.107827.

    Article  CAS  Google Scholar 

  32. Wei CH, Guo SG, Ma W, Mei SX, Xiang B, Gao B. Recent progress of bismuth-based electrode materials for advanced sodium ion batteries anode. Chin J Rare Met. 2021;45(5):611. https://doi.org/10.13373/j.cnki.cjrm.XY20070021.

    Article  Google Scholar 

  33. Wang WZ, Liu MJ, Yang ZX, Mai WJ, Gong JT. Synthesis and raman optical properties of single-crystalline Bi nanowires. Physica E Low Dimens Syst Nanostruct. 2012;44(7–8):1142. https://doi.org/10.1016/j.physe.2012.01.001.

    Article  CAS  ADS  Google Scholar 

  34. Bai XY, Li SS, Das S, Du LJ, Dai YY, Yao LD, Raju R, Du MD, Lipsanen H, Sun ZP. Single-step chemical vapour deposition of anti-pyramid MoS2/WS2 vertical heterostructures. Nanoscale. 2021;13(8):4537. https://doi.org/10.1039/d0nr08281c.

    Article  CAS  PubMed  Google Scholar 

  35. Ma H, Wang T, Li J, Yang J, Liu Z, Wang N, Su D, Wang C. Nitrogen doped carbon coated bi microspheres as high-performance anode for half and full sodium ion batteries. Chem Asian J. 2021. https://doi.org/10.1002/asia.202100519.

    Article  PubMed  Google Scholar 

  36. Zhong YT, Li B, Li SM, Xu SY, Pan ZH, Huang QM, Xing LD, Wang CS, Li WS. Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nanomicro Lett. 2018;10:56. https://doi.org/10.1007/s40820-018-0209-1.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Cheng XL, Li DJ, Wu Y, Xu R, Yu Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J Mater Chem A. 2019;7(9):4913. https://doi.org/10.1039/C8TA11947C.

    Article  CAS  ADS  Google Scholar 

  38. Hong WW, Ge P, Jiang YL, Yang L, Tian Y, Zou GQ, Cao XY, Hou HS, Ji XB. Yolk-shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl Mater Interfaces. 2019;11(11):10829. https://doi.org/10.1021/acsami.8b20477.

    Article  CAS  PubMed  Google Scholar 

  39. Wu DX, Wang CY, Wu MG, Chao YF, He PB, Ma JM. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem. 2020;43:24. https://doi.org/10.1016/j.jechem.2019.08.003.

    Article  Google Scholar 

  40. Zhang F, Liu XJ, Wang BB, Wang G, Wang H. Bi@C nanospheres with the unique petaloid core-shell structure anchored on porous graphene nanosheets as an anode for stable sodium- and potassium-ion batteries. ACS Appl Mater Interfaces. 2021;13(50):59867. https://doi.org/10.1021/acsami.1c16946.

    Article  CAS  PubMed  Google Scholar 

  41. Cui RC, Zhou HY, Li JC, Yang CC, Jiang Q. Ball-cactus-like Bi embedded in N-riched carbon nanonetworks enables the best potassium storage performance. Adv Funct Mater. 2021;31(33):2103067. https://doi.org/10.1002/adfm.202103067.

    Article  CAS  Google Scholar 

  42. Chen KT, Tuan HY. Bi-Sb nanocrystals embedded in phosphorus as high-performance potassium ion battery electrodes. ACS Nano. 2020;14(9):11648. https://doi.org/10.1021/acsnano.0c04203.

    Article  CAS  PubMed  Google Scholar 

  43. Guo QB, Ma YF, Chen TT, Xia QY, Yang M, Xia H, Yu Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano. 2017;11(12):12658. https://doi.org/10.1021/acsnano.7b07132.

    Article  CAS  PubMed  Google Scholar 

  44. Shi XL, Zhang JS, Yao QQ, Wang R, Wu HF, Zhao Y, Guan LH. A self-template approach to synthesize multicore–shell Bi@N-doped carbon nanosheets with interior void space for high-rate and ultrastable potassium storage. J Mater Chem A. 2020;8(16):8002. https://doi.org/10.1039/C9TA13975C.

    Article  CAS  Google Scholar 

  45. Wang XX, Wu Y, Huang P, Chen P, Wang ZY, Xu XW, Xie J, Yan J, Li SG, Tu J, Ding YL. A multi-layered composite assembly of Bi nanospheres anchored on nitrogen-doped carbon nanosheets for ultrastable sodium storage. Nanoscale. 2020;12(46):23682. https://doi.org/10.1039/D0NR07230C.

    Article  CAS  PubMed  Google Scholar 

  46. Liang YZ, Song N, Zhang ZCY, Chen WH, Feng JK, Xi BJ, Xiong SL. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv Mater. 2022;34(28):2202673. https://doi.org/10.1002/adma.202202673.

    Article  CAS  Google Scholar 

  47. Zhong L, Zhang WL, Sun SR, Zhao L, Jian WB, He X, Xing ZY, Shi ZX, Chen YN, Alshareef HN, Qiu XQ. Engineering of the crystalline lattice of hard carbon anodes toward practical potassium-ion batteries. Adv Funct Mater. 2022;33(8):2211872. https://doi.org/10.1002/adfm.202211872.

    Article  CAS  Google Scholar 

  48. Yang H, Chen LW, He FX, Zhang JQ, Feng YZ, Zhao LK, Wang B, He LX, Zhang QB, Yu Y. Optimizing the void size of yolk-shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries. Nano Lett. 2020;20(1):758. https://doi.org/10.1021/acs.nanolett.9b04829.

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Wang YX, Wang YX, Wang Y-X, Feng XM, Chen WH, Qian JF, Ai XP, Yang HX, Cao YL. In situ formation of Co9S8 nanoclusters in sulfur-doped carbon foam as a sustainable and high-rate sodium-ion anode. ACS Appl Mater Interfaces. 2019;11(21):19218. https://doi.org/10.1021/acsami.9b05134.

    Article  CAS  PubMed  Google Scholar 

  50. Chen J, Fan XL, Ji X, Gao T, Hou S, Zhou XQ, Wang LN, Wang F, Yang CY, Chen L, Wang CS. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy Environ Sci. 2018;11(5):1218. https://doi.org/10.1039/c7ee03016a.

    Article  CAS  Google Scholar 

  51. Liu SN, Luo ZG, Guo JH, Pan AQ, Cai ZY, Liang SQ. Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochem commun. 2017;81:10. https://doi.org/10.1016/j.elecom.2017.05.011.

    Article  CAS  ADS  Google Scholar 

  52. Li ZH, Zhong WH, Cheng DJ, Zhang HY. One-step large-scale fabrication of Bi@N-doped carbon for ultrahigh-rate and long-life sodium-ion battery anodes. J Mater Sci. 2021;56:11000. https://doi.org/10.1007/s10853-021-05978-z.

    Article  CAS  ADS  Google Scholar 

  53. Wang LB, Voskanyan AA, Chan KY, Qin B, Li FJ. Combustion synthesized porous bismuth/N-doped carbon nanocomposite for reversible sodiation in a sodium-ion battery. ACS Appl Mater Interfaces. 2020;3(1):565. https://doi.org/10.1021/acsaem.9b01799.

    Article  CAS  Google Scholar 

  54. Hu CJ, Zhu YS, Ma GY, Tian F, Zhou YL, Yang J, Qian YT. Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries. Electrochim Acta. 2021;365: 137379. https://doi.org/10.1016/j.electacta.2020.137379.

    Article  CAS  Google Scholar 

  55. Zhong X, Chen YW, Zhang W, Zhang ZW, Li MQ. Facile synthesis of a honeycomb-like nano-Bi/N-Doped C composite as an anode for sodium-ion batteries with superb cycle stability. ACS Sustain Chem Eng. 2022;10(27):8856. https://doi.org/10.1021/acssuschemeng.2c01798.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22108044), the Research and Development Program in Key Fields of Guangdong Province (No. 2020B1111380002), the Basic Research and Applicable Basic Research in Guangzhou City (No. 202201010290) and the financial support from the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery (No. 2021GDKLPRB07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Qing Qiu or Wen-Li Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 15606 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, ZH., Qiu, XQ., Zu, XH. et al. Ultra-high-rate Bi anode encapsulated in 3D lignin-derived carbon framework for sodium-ion hybrid capacitors. Rare Met. 43, 1037–1047 (2024). https://doi.org/10.1007/s12598-023-02508-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02508-5

Keywords

Navigation