Skip to main content
Log in

Optimized valence state of Co and Ni in high-entropy alloy for high active-stable OER

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

高熵合金表现出良好潜在的电催化水分解性能,但其受到制备过程中高能耗的限制。此外,复杂的原子分布使高熵合金的电子结构调控仍然具有很大的挑战性。本文采用高能球磨结合去合金化方法制备了纳米多孔NiCuMnCoFe高熵合金。Fe的引入显著提高了Ni3+和Co3+的比例。大量高价态Ni和Co原子有利于在析氧反应过程中形成关键的活性中间体,并赋予纳米多孔NiCuMnCoFe高熵合金283 mV的低过电位和81.09 mV·dec-1的优异Tafel斜率(10 mA·cm-2)。同时,纳米多孔NiCuMnCoFe高熵合金表现出优异的耐久性,其活性优于大多数其他报道的高熵合金类催化剂。优化的d带中心决定了纳米多孔NiCuMnCoFe高熵合金中Fe、Co和Ni位点中间体的吸附和解吸之间的平衡,并确定了析氧反应的决速步是O2形成步骤。这项工作为调控高熵合金的元素价态并实现高效电催化水分解铺平道路。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Yu ZY, Sun Q, Li H, Qiao ZJ, Li WJ, Chou SL, Zhang ZJ, Jiang Y. Tuning single-phase medium-entropy oxides derived from nanoporous NiCuCoMn alloy as a highly stable anode for Li-ion batteries. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02293-1.

    Article  Google Scholar 

  2. Hu WH, Zheng MB, Duan HY, Zhu W, Wei Y, Zhang Y, Pan KM, Pang H. Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. Chin Chem Lett. 2022;33(3):1412. https://doi.org/10.1016/j.cclet.2021.08.025.

    Article  CAS  Google Scholar 

  3. Xu X, Zhang Y, Miao X. Synthesis and electrocatalytic performance of 3D coral-Like NiCo-P. Chin J Rare Met. 2022;46(11):1449. https://doi.org/10.13373/j.cnki.cjrm.XY22080001.

    Article  CAS  Google Scholar 

  4. Xue YR, Liu MY, Qin YYX, Zhang YF, Zhang XJ, Fang JJ, Zhang X, Zhu W, Zhuang ZB. Ultrathin NiFeS nanosheets as highly active electrocatalysts for oxygen evolution reaction. Chin Chem Lett. 2022;33(8):3916. https://doi.org/10.1016/j.cclet.2021.11.085.

    Article  CAS  Google Scholar 

  5. Liu Y, Bai L, Jia QQ, Li PT, Yan Y, Yuan NK, Hao XD. Facile preparation of hierarchical Ni@Mn-doped NiO hybrids for efficient and durable oxygen evolution reaction. Chin Chem Lett. 2023;34(5):107855. https://doi.org/10.1016/j.cclet.2022.107855.

    Article  CAS  Google Scholar 

  6. Pei CQ, Chen SQ, Zhao TC, Li M, Cui ZT, Sun BA, Hu SG, Lan S, Hahn H, Feng T. Nanostructured metallic glass in a highly upgraded energy state contributing to efficient catalytic performance. Adv Mater. 2022;34(26):e2200850. https://doi.org/10.1002/adma.202200850.

    Article  CAS  Google Scholar 

  7. Gao FY, Liu SN, Ge JC, Zhang XL, Zhu L, Zheng YR, Duan Y, Qin S, Dong WX, Yu XX, Bao RC, Yang PP, Niu ZZ, Ding ZG, Liu W, Lan S, Gao MR, Yan YS, Yu SH. Nickel–molybdenum–niobium metallic glass for efficient hydrogen oxidation in hydroxide exchange membrane fuel cells. Nat Catal. 2022;5(11):993. https://doi.org/10.1038/s41929-022-00862-8.

    Article  CAS  Google Scholar 

  8. Lu Y, Li C, Tian L, Zhai J, Kou S. Research progress on properties of high-entropy alloys. Chin J Rare Met. 2022;46(10):1352. https://doi.org/10.13373/j.cnki.cjrm.XY20110029.

    Article  Google Scholar 

  9. Ebrahimian M, Rizi MS, Hong SI, Kim JH. Effects of molybdenum on hot deformation behavior and microstructural evolution of Fe40Mn40Co10Cr10C0.5 high entropy alloys. Sci Technol Adv Mat. 2023;24(1):2186119. https://doi.org/10.1080/14686996.2023.2186119.

    Article  CAS  Google Scholar 

  10. Wang ZY, You JH, Zhao Y, Yao RY, Liu GY, Lu JL, Zhao SY. Research progress on high entropy alloys and high entropy derivatives as OER catalysts. J Environ Chem Eng. 2023;11(1):109080. https://doi.org/10.1016/j.jece.2022.109080.

    Article  CAS  Google Scholar 

  11. Wang YQ, Tao S, Lin H, Han SB, Zhong WH, Xie YS, Hu J, Yang SH. NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst. Rsc Adv. 2020;10(55):33475. https://doi.org/10.1039/d0ra06617f.

    Article  CAS  Google Scholar 

  12. Zou HJ, Liu X, Wang KW, Duan YY, Wang C, Zhang B, Zhou K, Yu DM, Gan LY, Zhou XY. Constructing highly active Co sites in Prussian blue analogues for boosting electrocatalytic water oxidatio. Chem Communn. 2023;57(65):8011. https://doi.org/10.1039/D1CC02224E.

    Article  Google Scholar 

  13. Qiao C, Hao YY, Cao CB, Zhang JT. Transformation mechanism of high-valence metal sites for the optimization of Co- and Ni-based OER catalysts in an alkaline environment: recent progress and perspectives. Nanoscale. 2023;15(2):450. https://doi.org/10.1039/D2NR05783B.

    Article  CAS  Google Scholar 

  14. Zhu H, Wu QK, Yu XL, Zhao DK, Zhou W, Wang N, Hou TT, Li LG. Mo-doped cobalt-manganese layered double hydroxide for oxygen evolution reaction. Mater Lett. 2023;342:134333. https://doi.org/10.1016/j.matlet.2023.134333.

    Article  CAS  Google Scholar 

  15. Rong W, Dang R, Chen YF, Huang K, Xia JY, Zhang BW, Liu JF, Li MX, Cao QG, Wu JS. CoFe layered double hydroxides with adjustable composition and structure for enhanced oxygen evolution reaction. New J Chem. 2023;47(20):9618. https://doi.org/10.1039/D3NJ01275A.

    Article  CAS  Google Scholar 

  16. Chu CL, Chen WP, Liu JH, Chen Q, Fu ZQ. Achieving strength–ductility synergy in a non-equiatomic Cr10Co30Fe30Ni30 high-entropy alloy with heterogeneous grain structures. Rare Met. 2022;14(8):2864. https://doi.org/10.1007/s12598-022-02019-9.

    Article  CAS  Google Scholar 

  17. Qiao C, Usman Z, Cao T, Rafai S, Wang ZT, Zhu YQ, Cao CB, Zhang JT. High-valence Ni and Fe sites on sulfated NiFe-LDH nanosheets to enhance O–O coupling for water oxidation. Chem Eng J. 2021;426:130873. https://doi.org/10.1016/j.cej.2021.130873.

    Article  CAS  Google Scholar 

  18. Yang HX, Li JS, Guo T, Wang WY, Kou HC, Wang J. Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes. Rare Met. 2020;39(2):156. https://doi.org/10.1007/s12598-019-01320-4.

    Article  CAS  Google Scholar 

  19. Yan YW, Li GR, Ren WX, Wang HM, Gao LP. Effects of hot rolling on microstructure and properties of FeCoNi1.5CrCu/2024Al composites. J Alloy Compd. 2022;900:163393. https://doi.org/10.1016/j.jallcom.2021.163393.

    Article  CAS  Google Scholar 

  20. Yan L, Zong LS, Sun QJP, Yu ZY, Qiao ZJ, Han JH, Cui ZY, Kang JL. Kang JL Phase separation-hydrogen etching-derived Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies boosting superior sodium-ion storage kinetics. J Energy Chem. 2023;80:163. https://doi.org/10.1016/j.jechem.2023.01.045.

    Article  CAS  Google Scholar 

  21. Zhang SF, Zhang ZJ, Zhang XY, Kang JL. Carbon coated NixCoyMn1-x-yO/Mn3O4 with robust deficiencies grown on nanoporous alloy for enhanced Li-Ion storage. Electrochim Acta. 2020;332:135468. https://doi.org/10.1016/j.electacta.2019.135468.

    Article  CAS  Google Scholar 

  22. Yan L, Zong LS, Zhang ZJ, Li JX, Wu HZ, Cui ZY, Kang JL. Oxygen vacancies activated porous MnO/graphene submicron needle arrays for high-capacity lithium-ion batteries. Carbon. 2022;190:402. https://doi.org/10.1016/j.carbon.2022.01.035.

    Article  CAS  Google Scholar 

  23. Cui XD, Zhang BL, Zeng CY, Guo SM. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction. Mrs Commun. 2018;8(3):1230. https://doi.org/10.1557/mrc.2018.111.

    Article  CAS  Google Scholar 

  24. Sharma L, Katiyar NK, Parui A, Das R, Kumar R, Tiwary CS, Singh AK, Halder A, Biswas K. Low-cost high entropy alloy (HEA) for high-efffciency oxygen evolution reaction (OER). Nano Res. 2022;15(6):4799. https://doi.org/10.1007/s12274-021-3802-4.

    Article  CAS  Google Scholar 

  25. Huang K, Peng DD, Yao ZX, Xia JY, Zhang BW, Liu H, Chen ZB, Wu F, Wu JS, Huang YZ. Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER. Chem Eng J. 2021;425:131533. https://doi.org/10.1016/j.cej.2021.131533.

    Article  CAS  Google Scholar 

  26. Huang J, Wang PL, Li P, Yin HY, Wang DH. Regulating electrolytic Fe0.5CoNiCuZn high entropy alloy electrodes for oxygen evolution reactions in alkaline solution. J Mater Sci Technol. 2021;93:110. https://doi.org/10.1016/j.jmst.2021.03.046.

    Article  CAS  Google Scholar 

  27. Zhang Y, Dai WJ, Zhang PF, Lu T, Pan Y. In-situ electrochemical tuning of (CoNiMnZnFe)3O3.2 high-entropy oxide for efffcient oxygen evolution reactions. J Alloy Compd. 2021;868:159064. https://doi.org/10.1016/j.jallcom.2021.159064.

    Article  CAS  Google Scholar 

  28. Chen H, Guan CQ, Feng HB. Pt-based high-entropy alloy nanoparticles as bifunctional electrocatalysts for hydrogen and oxygen evolution. Acs Appl Nano Mater. 2022;5(7):9810. https://doi.org/10.1021/acsanm.2c02003.

    Article  CAS  Google Scholar 

  29. Zhang YY, Lyu J, Zhao YL, Hu KL, Chen ZH, Lin X, Xie GQ, Liu XJ, Qiu HJ. In situ coupling of Ag nanoparticles with high-entropy oxides as highly stable bifunctional catalysts for wearable Zn–Ag/Zn–air hybrid batteries. Nanoscale. 2021;13:16164. https://doi.org/10.1039/D1NR03539H.

    Article  CAS  Google Scholar 

  30. Li HD, Lai JP, Li ZJ, Wang L. Multi-sites electrocatalysis in high-entropy alloys. Adv Funct Mater. 2021;31(47):2106715. https://doi.org/10.1002/adfm.202106715.

    Article  CAS  Google Scholar 

  31. Nandan R, Rekha MY, Devi HR, Srivastava C, Nanda KK. High-entropy alloys for water oxidation: a new class of electrocatalysts to look out for. Chem Commun. 2021;57(5):611. https://doi.org/10.1039/D0CC06485H.

    Article  CAS  Google Scholar 

  32. Zhang N, Feng XB, Rao DW, Deng X, Cai LJ, Qiu BC, Long R, Xiong YJ, Lu Y, Chai Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat Commun. 2020;11(1):4066. https://doi.org/10.1038/s41467-020-17934-7.

    Article  CAS  Google Scholar 

  33. Yu J, Wang J, Long X, Chen L, Cao Q, Wang J, Qiu C, Lim J, Yang SH. Formation of FeOOH nanosheets induces substitutional doping of CeO2-x with high-valence Ni for efficient water oxidation. Adv Energy Mater. 2021;11(4):2002731. https://doi.org/10.1002/aenm.202002731.

    Article  CAS  Google Scholar 

  34. Einert M, Mellin M, Bahadorani N, Dietz C, Lauterbach S, Hofmann J. Mesoporous high-entropy oxide thin films: electrocatalytic water oxidation on high-surface-area spinel (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4 electrodes. ACS Appl Energy Mater. 2022;5(1):717. https://doi.org/10.1021/acsaem.1c03190.

    Article  CAS  Google Scholar 

  35. Zheng XB, Yang JR, Xu ZF, Wang QS, Wu JB, Zhang EH, Dou SX, Sun WP, Wang DS, Li YD. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew Chem Int Ed. 2022;61:e202205946. https://doi.org/10.1002/anie.202205946.

    Article  CAS  Google Scholar 

  36. Li P, Yao YP, Ouyang WE, Liu Z, Yin HY, Wang DF. A stable oxygen evolution splitting electrocatalysts high entropy alloy FeCoNiMnMo in simulated seawater. J Mater Sci Technol. 2023;138:29. https://doi.org/10.1016/j.jmst.2022.08.012.

    Article  CAS  Google Scholar 

  37. Anantharaj S, Kundu S, Noda S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy. 2021;80:105514. https://doi.org/10.1016/j.nanoen.2020.105514.

    Article  CAS  Google Scholar 

  38. Li HG, Wang J, Qi RJ, Hu YF, Zhang J, Zhao HB, Zhang JJ, Zhao YF. Enhanced Fe 3d delocalization and moderate spin polarization in FeNi atomic pairs for bifunctional ORR and OER electrocatalysis. Appl Catal B-Environ. 2021;285:119778. https://doi.org/10.1016/j.apcatb.2020.119778.

    Article  CAS  Google Scholar 

  39. Luo DZ, Yang BP, Mei ZW, Kang Q, Chen G, Liu XH, Zhang N. Tuning the d-band states of Ni-based serpentine materials via Fe3+ doping for efficient oxygen evolution reaction. Acs Appl Mater Inter. 2022;14(47):52857. https://doi.org/10.1021/acsami.2c14720.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52271011 and 52102291). We would like to thank the Analytical & Testing Center of Tiangong University for Transmission Electron Microscope work. And many thanks also go to Dr. Zhonghui Gao for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Meng Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2928 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZJ., Guo, JP., Sun, SH. et al. Optimized valence state of Co and Ni in high-entropy alloy for high active-stable OER. Rare Met. 42, 3607–3613 (2023). https://doi.org/10.1007/s12598-023-02448-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02448-0

Navigation