Skip to main content

Advertisement

Log in

Tunable structural coloration of ultrathin zirconia nanotubes film

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Zirconium (Zr) is a rare metal widely used in aerospace and military applications. However, its single color does not meet the requirements of camouflage and aesthetics. Here, a series of ultrathin structural colorations of Zr by coating it with a one-step anodization procedure were realized. Tunable colors of ultrathin zirconia (ZrO2) films can be obtained by adjusting the anodization time and can be tuned throughout the entire visible range. The structural color could endure 30,000 s of rinsing tests, 400 °C heat resistance tests, and over 480 h of intense ultraviolet irradiation. Zr/ZrO2 films may have potential in color displays, camouflage, and anti-counterfeiting technology.

Graphical Abstract

摘要

锆(Zr)是一种广泛应用于航空航天和军事领域的稀有金属;然而,其单一的颜色并不能满足伪装和美学的要求。 在此,我们通过一步式阳极氧化工艺对锆进行涂层,实现了一系列的超薄结构着色。通过调整阳极氧化锆(ZrO2) 薄膜,可以获得可调控的颜色,并且可以在整个可见范围内进行调控。结构颜色可以经受30000 次漂洗测试,400 ℃ 耐热测试,以及超过480 h 的强烈紫外线照射。Zr/ZrO2 薄膜可能在彩色显示器、伪装和防伪技术方面具有潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Chen FX, Huang Y, Li R, Zhang SL, Jiang QY, Luo YX, Wang BS, Zhang WS, Wu XK, Wang F, Lyu P, Zhao SM, Xu WL, Wei F, Zhang RF. Superdurable and fire-retardant structural coloration of carbon nanotubes. Sci Adv. 2022;8(26):8. https://doi.org/10.1126/sciadv.abn5882.

    Article  CAS  Google Scholar 

  2. Wang YL, Han RH, Qi LQ, Liu LH, Sun HY. Synthesis of ultrathin TiO2/Ti films with tunable structural color. Appl Opt. 2016;55(35):10002. https://doi.org/10.1364/ao.55.010002.

    Article  Google Scholar 

  3. Land MF. The physics and biology of animal reflectors. Prog Biophys Mol Biol. 1972;24:75. https://doi.org/10.1016/0079-6107(72)90004-1.

    Article  CAS  Google Scholar 

  4. Vukusic P, Sambles JR, Lawrence CR. Structural colour: colour mixing in wing scales of a butterfly. Nature. 2000;404(6777):457. https://doi.org/10.1038/35006561.

    Article  CAS  Google Scholar 

  5. Liu GJ, Zhou L, Fan QG, Chai LQ, Shao JZ. The vertical deposition self-assembly process and the formation mechanism of poly(styrene-co-methacrylic acid) photonic crystals on polyester fabrics. J Mater Sci. 2016;51(6):2859. https://doi.org/10.1007/s10853-015-9594-8.

    Article  CAS  Google Scholar 

  6. Yoshioka S, Shimizu Y, Kinoshita S, Matsuhana B. Structural color of a lycaenid butterfly: analysis of an aperiodic multilayer structure. Bioinspir Biomim. 2013;8(4):9. https://doi.org/10.1088/1748-3182/8/4/045001.

    Article  Google Scholar 

  7. Parker AR, Welch VL, Driver D, Martini N. Structural colour: opal analogue discovered in a weevil. Nature. 2003;426(6968):786. https://doi.org/10.1038/426786a.

    Article  CAS  Google Scholar 

  8. Zhang ZH, Chen ZY, Wang Y, Zhao YJ, Shang LR. Cholesteric cellulose liquid crystals with multifunctional structural colors. Adv Funct Mater. 2022;32(12):8. https://doi.org/10.1002/adfm.202107242.

    Article  CAS  Google Scholar 

  9. Li ZW, Wang XJ, Han LL, Zhu CH, Xin HL, Yin YD. Multicolor photonic pigments for rotation-asymmetric mechanochromic devices. Adv Mater. 2022;34(4):8. https://doi.org/10.1002/adma.202107398.

    Article  CAS  Google Scholar 

  10. Zhao YJ, Shang LR, Cheng Y, Gu ZZ. Spherical colloidal photonic crystals. Acc Chem Res. 2014;47(12):3632. https://doi.org/10.1021/ar500317s.

    Article  CAS  Google Scholar 

  11. Xu Q, Ma HM, Zhang YJ, Li RS, Sun HY. Synthesis of iridescent Ni-containing anodic aluminum oxide films by anodization in oxalic acid. Opt Mater. 2016;52:107. https://doi.org/10.1016/j.optmat.2015.12.021.

    Article  CAS  Google Scholar 

  12. Zhang ZJ, Zhang JJ, Hou X, Wu TS, Sun HY. Iridescent thin films of porous anodic aluminum oxide with embedded silver nanowires. Thin Solid Films. 2014;558:344. https://doi.org/10.1016/j.tsf.2014.03.044.

    Article  CAS  Google Scholar 

  13. Liu HY, Sun HY, Liu LH, Hou X, Jia XX. Optical properties of porous anodic alumina embedded Cu nanocomposite films. Opt Mater. 2015;44:9. https://doi.org/10.1016/j.optmat.2015.02.017.

    Article  CAS  Google Scholar 

  14. Zhang F, Pu MB, Gao P, Jin JJ, Li X, Guo YH, Ma XL, Luo J, Yu HL, Luo XG. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv Sci. 2020;7(10):10. https://doi.org/10.1002/advs.201903156.

    Article  CAS  Google Scholar 

  15. Ito MM, Gibbons AH, Qin DT, Yamamoto D, Jiang HD, Yamaguchi D, Tanaka K, Sivaniah E. Structural colour using organized microfibrillation in glassy polymer films. Nature. 2019;570(7761):363. https://doi.org/10.1038/s41586-019-1299-8.

    Article  CAS  Google Scholar 

  16. Sardar S, Wojcik P, Kang ESH, Shanker R, Jonsson MP. Structural coloration by inkjet-printing of optical microcavities and metasurfaces. J Mater Chem C. 2019;7(28):8698. https://doi.org/10.1039/c9tc02796c.

    Article  CAS  Google Scholar 

  17. Li YC, Fan QS, Wang XH, Liu GJ, Chai LQ, Zhou L, Shao JZ, Yin YD. Shear-induced assembly of liquid colloidal crystals for large-scale structural coloration of textiles. Adv Func Mater. 2021;31(19):9. https://doi.org/10.1002/adfm.202010746.

    Article  CAS  Google Scholar 

  18. Liu Y, Han F, Li F, Zhao Y, Chen M, Xu Z, Zheng X, Hu H, Yao J, Guo T, Lin W, Zheng Y, You B, Liu P, Li Y, Qian L. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat Commun. 2019;10(1):2409. https://doi.org/10.1038/s41467-019-10406-7.

    Article  CAS  Google Scholar 

  19. Han F, Liu Y, Li F, Lu Y, Cheng H, Lin Y, Zhao T, Ng SH, Bach U, Zheng Y. Self-assembly of coordination polymers on plasmonic surfaces for computer vision decodable, unclonable and colorful security labels. J Mater Chem C. 2019;7(42):13040. https://doi.org/10.1039/c9tc04615a.

    Article  CAS  Google Scholar 

  20. Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv Mater. 2022;34(26):e2109055. https://doi.org/10.1002/adma.202109055.

    Article  CAS  Google Scholar 

  21. Hong W, Yuan Z, Chen X. Structural color materials for optical anticounterfeiting. Small. 2020;16(16):e1907626. https://doi.org/10.1002/smll.201907626.

    Article  CAS  Google Scholar 

  22. Miller BH, Liu H, Kolle M. Scalable optical manufacture of dynamic structural colour in stretchable materials. Nat Mater. 2022. https://doi.org/10.1038/s41563-022-01318-x.

    Article  Google Scholar 

  23. Miao S, Wang Y, Sun L, Zhao Y. Freeze-derived heterogeneous structural color films. Nat Commun. 2022;13(1):4044. https://doi.org/10.1038/s41467-022-31717-2.

    Article  CAS  Google Scholar 

  24. Sun Y, Le X, Zhou S, Chen T. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting. Adv Mater. 2022. https://doi.org/10.1002/adma.202201262.

    Article  Google Scholar 

  25. Chen F, Huang Y, Li R, Zhang S, Jiang Q, Luo Y, Wang B, Zhang W, Wu X, Wang F, Lyu P, Zhao S, Xu W, Wei F, Zhang R. Superdurable and fire-retardant structural coloration of carbon nanotubes. Sci Adv. 2022;8(26):eabn5882. https://doi.org/10.1126/sciadv.abn5882.

    Article  CAS  Google Scholar 

  26. Jiang CL, Wang F, Wu NQ, Liu XG. Up- and down-conversion cubic zirconia and Hafnia nanobelts. Adv Mater. 2008;20(24):4826. https://doi.org/10.1002/adma.200801459.

    Article  CAS  Google Scholar 

  27. Wei Y, Liu SJ, Xiao ZH, Zhao HW, Luo J, Deng XL, Guo L. Enamel repair with amorphous ceramics. Adv Mater. 2020;32(7):10. https://doi.org/10.1002/adma.201907067.

    Article  CAS  Google Scholar 

  28. Pesic M, Hoffmann M, Richter C, Mikolajick T, Schroeder U. Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Adv Func Mater. 2016;26(41):7486. https://doi.org/10.1002/adfm.201603182.

    Article  CAS  Google Scholar 

  29. Zhao CY, Sun XD, Li WS, Shi MW, Ren KL, Lu XM. Reduced self-discharge of supercapacitors using piezoelectric separators. Acs Appl Energy Mater. 2021;4(8):8070. https://doi.org/10.1021/acsaem.1c01373.

    Article  CAS  Google Scholar 

  30. Wu WW, Cai JC, Wu XH, Li YN, Liao S. Nanocrystalline ZrO2 preparation and kinetics research of phase transition. Rare Met. 2012;31(1):51. https://doi.org/10.1007/s12598-012-0462-2.

    Article  CAS  Google Scholar 

  31. Wang ZG, Chen WD, Yan SF, Fan XJ, Xu ZG. Characterization of ZrO2 ceramic coatings on ZrH1.8prepared in different electrolytes by micro-arc oxidation. Rare Met. 2022;41(3):1043. https://doi.org/10.1007/s12598-015-0503-8.

    Article  CAS  Google Scholar 

  32. Yong YW, Fu W, Deng QL, Yang JG. Mechanism of Zr in in situ-synthesized particle reinforced composite coatings by laser cladding. Rare Met. 2017;36(12):934. https://doi.org/10.1007/s12598-017-0944-3.

    Article  CAS  Google Scholar 

  33. Cong ZZ, Wang ML, Sun XD, Liu LH, Sun HY. Optical and dielectric properties of anodic iron oxide films. Appl Surf Sci. 2020;503:7. https://doi.org/10.1016/j.apsusc.2019.144159.

    Article  CAS  Google Scholar 

  34. Sun XD, Mo XM, Liu LH, Sun HY, Pan CF. Voltage-driven room-temperature resistance and magnetization switching in ceramic TiO2/PAA nanoporous composite films. Acs Appl Mater Inter. 2019;11(24):21661. https://doi.org/10.1021/acsami.9b02593.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development program of China (No. 2021YFA1401103), the National Natural Science Foundation of China (Nos. 61825403, 61921005 and 61674078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Shi or Li-Jia Pan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, XD., Yu, HW., Zhao, CY. et al. Tunable structural coloration of ultrathin zirconia nanotubes film. Rare Met. 42, 3304–3310 (2023). https://doi.org/10.1007/s12598-023-02313-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02313-0

Navigation