Skip to main content
Log in

Review on modification routes for SnOx-based anodes for Li storage: morphological structure tuning and phase structure design

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Fascinating with high specific capacity and moderate lithiation potential, SnOx-based materials have been intensively investigated as one of the most promising anodes for lithium-ion batteries. However, due to poor cycling stability, sluggish reaction kinetics, and limited electrochemical reaction reversibility, the development of SnOx-based anodes has been hindered. And the current preparation and modification routes for SnOx-based anodes lack direct and specific illustration. Herein, modification routes for SnOx-based anodes have been emphasized. Firstly, to provide more direct instructions, the tuning routes of morphological structure for SnOx-based electrodes (including slurry-based and self-supported) have been thoroughly discussed from the preparation perspective. Secondly, according to the properties of SnOx-based anodes, the phase structure design ideas have also been properly classified and organized for addressing chemical reaction kinetics or thermodynamic issues. Finally, for future-oriented studies, new insights into the development and commercialization prospects of SnOx-based anodes are also provided. This review, with comprehensive information on SnOx-based anodes, aims to bring more specific guidance and valuable inspiration for peer researchers who are promoting the application of SnOx-based materials for energy conversion and storage devices

Graphical Abstract

由于具有高比容量和适度的锂化电位, SnOx基材料是锂离子电池最有希望的负极之一, 并且被深入研究。然而, 由于循环稳定性差、反应动力学迟缓和电化学反应可逆性有限, SnOx基负极的发展一直受到阻碍。而且目前关于SnOx基负极的制备和改性策略缺乏直接和具体的说明。在此, 我们强调了SnOx基负极的改性策略。首先, 从制备的角度深入讨论了SnOx基负极的形态结构的改性方法 (包括浆料型和自支撑型) 。其次, 根据SnOx基负极的特性, 针对化学反应动力学和热力学问题, 也对相结构设计思路进行了适当的分类和整理。最后, 面向未来的研究, 还提供了对SnOx基负极的发展和商业化前景的新见解。这篇综述全面介绍了SnOx基负极的相关信息, 旨在推动SnOx基材料在能源转换和储存装置中的应用, 也将为同行研究者带来更多具体的建议和启发。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [61]. Copyright 2019, the American Chemistry Society. b Formation process of rattle-type porous Sn/C composite fibers. Reprinted with permission from Ref. [68]. Copyright 2018, Royal Society of Chemistry

Fig. 3

Copyright 2019, Elsevier. b Schematic illustration of preparation process of Sn-Fe/C-G 3D network by pyrolysising double-network hydrogel. Reproduced with permission from Ref. [88]. Copyright 2018, the American Chemistry Society

Fig. 4

Reproduced with permission from Ref. [95]. Copyright 2021, the American Chemistry Society. b SEM images of Sn-C hybrid with different P-milling (i: 2.5 h, ii: 7.5 h, iii: 10 h, and iv: conventional milling for 10 h). Reproduced with permission from Ref. [96]. Copyright 2012, Royal Society of Chemistry. c Preparing process of Sn-Fe3O4@C composites via P-milling. Reproduced with permission from Ref. [97]. Copyright 2016, Royal Society of Chemistry

Fig. 5

Copyright 2017, Wiley–VCH. b Cycle stability of SnO2-Co-C hybrid with scalable roller ball-milling process; c cycling performance of SnO2-Co-C||LiFePO4 full cells cycled at a current rate of 0.2C within 2.3–3.4 V, respectively. Reprinted with permission from Ref. [93]. Copyright 2018, Royal Society of Chemistry

Fig. 6

Copyright 2014, Royal Society of Chemistry

Fig. 7

Copyright 2017, Royal Society of Chemistry

Fig. 8

Copyright 2022, Wiley–VCH

Fig. 9

Reproduced with permission from Ref. [175]. Copyright 2019, Elsevier. c Formation process of build-in electric field and its role in SnSe/SnO2 system. Reproduced with permission from Ref. [176]. Copyright 2018, Elsevier

Fig. 10

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7:19. https://doi.org/10.1038/nchem.2085.

    Article  CAS  Google Scholar 

  2. Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater. 2016;16:16. https://doi.org/10.1038/nmat4834.

    Article  CAS  Google Scholar 

  3. Wang B, Luo B, Li X, Zhi L. The dimensionality of Sn anodes in Li-ion batteries. Mater Today. 2012;15:544. https://doi.org/10.1016/S1369-7021(13)70012-9.

    Article  CAS  Google Scholar 

  4. Duan J, Zheng Y, Luo W, Wu W, Wang T, Xie Y, Li S, Li J, Huang Y. Is graphite lithiophobic or lithiophilic? Natl Sci Rev. 2021;7:1208. https://doi.org/10.1093/nsr/nwz222.

    Article  CAS  Google Scholar 

  5. Liu L, Xie F, Lyu J, Zhao T, Li T, Choi BG. Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J Power Sources. 2016;321:11. https://doi.org/10.1016/j.jpowsour.2016.04.105.

    Article  CAS  Google Scholar 

  6. Tan L, Lan X, Chen J, Zhang H, Hu R, Zhu M. LiF-induced stable solid electrolyte interphase for a wide temperature SnO2-based anode extensible to −50 °C. Adv Energy Mater. 2021;11:1. https://doi.org/10.1002/aenm.202101855.

    Article  CAS  Google Scholar 

  7. Tan L, Hu R, Zhang H, Lan X, Liu J, Wang H, Yuan B, Zhu M. Subzero temperature promotes stable lithium storage in SnO2. Energy Storage Mater. 2021;36:242. https://doi.org/10.1016/j.ensm.2020.12.033.

    Article  Google Scholar 

  8. Aravindan V, Jinesh KB, Prabhakar RR, Kale VS, Madhavi S. Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. Nano Energy. 2013;2:720. https://doi.org/10.1016/j.nanoen.2012.12.007.

    Article  CAS  Google Scholar 

  9. Hu R, Zhang H, Lu Z, Liu J, Zeng M, Yang L, Yuan B, Zhu M. Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals. Nano Energy. 2018;45:255. https://doi.org/10.1149/MA2019-01/2/322.

    Article  CAS  Google Scholar 

  10. Hu R, Chen D, Waller G, Ouyang Y, Chen Y, Zhao B, Rainwater B, Yang C, Zhu M, Liu M. Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ Sci. 2016;9:595. https://doi.org/10.1039/C5EE03367E.

    Article  CAS  Google Scholar 

  11. Wu C, Zhu G, Wang Q, Wu M, Zhang H. Sn-based nanomaterials: from composition and structural design to their electrochemical performances for Li- and Na-ion batteries. Energy Storage Mater. 2021;43:430. https://doi.org/10.1016/j.ensm.2021.09.026.

    Article  Google Scholar 

  12. Hu R, Ouyang Y, Liang T, Tang X, Yuan B, Liu J, Zhang L, Yang L, Zhu M. Inhibiting grain coarsening and inducing oxygen vacancies: the roles of Mn in achieving a highly reversible conversion reaction and a long life SnO2-Mn-graphite ternary anode. Energy Environ Sci. 2017;10:2017. https://doi.org/10.1039/C7EE01635B.

    Article  CAS  Google Scholar 

  13. Zhou X, Wan LJ, Guo YG. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater. 2013;25(15):2152. https://doi.org/10.1002/adma.201300071.

    Article  CAS  Google Scholar 

  14. Lan X, Xiong X, Liu J, Yuan B, Hu R, Zhu M. Insight into reversible conversion reactions in SnO2-based anodes for Lithium storage: a review. Small. 2022;18(26):2201110. https://doi.org/10.1002/smll.202201110.

    Article  CAS  Google Scholar 

  15. Lin Z, Lan X, Xiong X, Hu R. Recent development of Sn-Fe-based materials as a substitute for Sn-Co-C anodes in Li-ion batteries: a review. Mater Chem Front. 2021;5:1185. https://doi.org/10.1039/D0QM00582G.

    Article  CAS  Google Scholar 

  16. Ying H, Han W-Q. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci. 2017;4(11):1700298. https://doi.org/10.1002/advs.201700298.

    Article  CAS  Google Scholar 

  17. Hu R, Liu H, Zeng M, Liu J, Zhu M. Progress on Sn-based thin-film anode materials for lithium-ion batteries. Chin Sci Bull. 2012;57(32):4119. https://doi.org/10.1007/s11434-012-5303-z.

    Article  CAS  Google Scholar 

  18. Li MY, Liu CL, Shi MR, Dong WS. Nanostructure Sn-Co-C composite lithium ion battery electrode with unique stability and high electrochemical performance. Electrochim Acta. 2011;56(8):3023. https://doi.org/10.1016/j.electacta.2010.12.102.

    Article  CAS  Google Scholar 

  19. Weeks JA, Sun H-H, Srinivasan HS, Burrow JN, Guerrera JV, Meyerson ML, Dolocan A, Heller A, Mullins CB. Facile synthesis of a tin oxide-carbon composite lithium-ion battery anode with high capacity retention. Acs Appl Energy Mater. 2019;2(10):7244. https://doi.org/10.1021/acsaem.9b01205.

    Article  CAS  Google Scholar 

  20. Yang T, Lu B. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries. Phys Chem Chem Phys. 2014;16(9):4115. https://doi.org/10.1039/c3cp54144d.

    Article  CAS  Google Scholar 

  21. Wu HB, Chen JS, Hng HH, Lou XW. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale. 2012;4(8):2526. https://doi.org/10.1039/c2nr11966h.

    Article  CAS  Google Scholar 

  22. Liu X, Zhang J, Si W, Xi L, Oswald S, Yan C, Schmidt OG. High-rate amorphous SnO2 nanomembrane anodes for Li-ion batteries with a long cycling life. Nanoscale. 2015;7(1):282. https://doi.org/10.1039/C4NR04903A.

    Article  CAS  Google Scholar 

  23. Han F, Li WC, Li MR, Lu AH. Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J Mater Chem. 2012;22(19):9645. https://doi.org/10.1039/C2JM31359F.

    Article  CAS  Google Scholar 

  24. Tian Q, Tian Y, Zhang Z, Yang L, Hirano SI. Double-shelled support and confined void strategy to improve the lithium storage properties of SnO2/C anode materials for lithium-ion batteries. J Mater Chem A. 2015;3(35):18036. https://doi.org/10.1039/C5TA04421A.

    Article  CAS  Google Scholar 

  25. Zhou B, Yang S, Wu L, Wu W, Wei W, Chen L, Zhang H, Pan J, Xiong X. Amorphous carbon framework stabilized SnO2 porous nanowires as high performance Li-ion battery anode materials. RSC Adv. 2015;5(62):49926. https://doi.org/10.1039/C5RA05372B.

    Article  CAS  Google Scholar 

  26. Ma C, Zhang W, He YS, Gong Q, Che H, Ma ZF. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nanoscale. 2016;8(7):4121. https://doi.org/10.1039/C5NR07996A.

    Article  CAS  Google Scholar 

  27. Li X, Hu Y, Liu J, Lushington A, Li R, Sun X. Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance. Nanoscale. 2013;5(24):12607. https://doi.org/10.1039/c3nr04823c.

    Article  CAS  Google Scholar 

  28. Yang G, Park SJ. Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials. 2019;12(7):1177. https://doi.org/10.3390/ma12071177.

    Article  CAS  Google Scholar 

  29. Huang W, Chen L, Chen Y, Zou M, Qian F, Li J, Huang Z. Improved reaction kinetics and reserved spacial structure of Fe3C-SnO2@void@C toward high-performance lithium storage. J Alloys Compd. 2019;785:925. https://doi.org/10.1016/j.jallcom.2018.12.388.

    Article  CAS  Google Scholar 

  30. Gu S, Zhu A. Graphene nanosheets loaded Fe3O4 nanoparticles as a promising anode material for lithium ion batteries. J Alloys Compd. 2020;813:152160. https://doi.org/10.1016/j.jallcom.2019.152160.

    Article  CAS  Google Scholar 

  31. Wang S, He M, Walter M, Krumeich F, Kravchyk KV, Kovalenko MV. Monodisperse CoSn2 and FeSn2 nanocrystals as high-performance anode materials for lithium-ion batteries. Nanoscale. 2018;10:6827. https://doi.org/10.1039/C7NR08261D.

    Article  CAS  Google Scholar 

  32. Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater. 2008;20:1160. https://doi.org/10.1002/adma.200701364.

    Article  CAS  Google Scholar 

  33. Yang R, Zhao W, Zheng J, Zhang X, Li X. One-step synthesis of carbon-coated tin dioxide nanoparticles for high lithium storage. J Phys Chem C. 2010;114:20272. https://doi.org/10.1021/jp107396a.

    Article  CAS  Google Scholar 

  34. Su L, Fu J, Zhang P, Wang L, Wang Y, Ren M. Uniform core-shell Cu6Sn5@C nanospheres with controllable synthesis and excellent lithium storage performances. RSC Adv. 2017;7:28399. https://doi.org/10.1039/C7RA02214J.

    Article  CAS  Google Scholar 

  35. Cui W, Wang F, Wang J, Liu H, Wang C, Xia Y. A modified carbothermal reduction method for preparation of high-performance nano-scale core/shell Cu6Sn5 alloy anodes in Li-ion batteries. J Power Sources. 2011;196(7):3633. https://doi.org/10.1016/j.jpowsour.2010.12.025.

    Article  CAS  Google Scholar 

  36. Narsimulu D, Vadnala S, Srinadhu ES, Satyanarayana N. Electrospun Sn-SnO2/C composite nanofibers as an anode material for lithium battery applications. J Mater Sci Mater Electron. 2018;29:11117. https://doi.org/10.1007/s10854-018-9195-9.

    Article  CAS  Google Scholar 

  37. Chen Z, Yin D, Zhang M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small. 2018;14:1. https://doi.org/10.1002/smll.201703818.

    Article  CAS  Google Scholar 

  38. Li H, Zhang C, Yan Y, Hu K, Shi X, Wang N, Lin H, Rui K, Zhu J, Huang W. Poly (ionic liquid) derived N-doped carbon@SnOx nanostructures self-reconstruction for alkaline-metal-ion batteries. J Power Sources. 2020;449:227509. https://doi.org/10.1016/j.jpowsour.2019.227509.

    Article  CAS  Google Scholar 

  39. Sun L, Ma T, Zhang J, Guo X, Yan C, Liu X. Double-shelled hollow carbon spheres confining tin as high-performance electrodes for lithium ion batteries. Electrochim Acta. 2019;321:134672. https://doi.org/10.1016/j.electacta.2019.134672.

    Article  CAS  Google Scholar 

  40. Wang H, Jiang X, Chai Y, Yang X, Yuan R. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries. J Power Sources. 2018;379:191. https://doi.org/10.1016/j.jpowsour.2018.01.054.

    Article  CAS  Google Scholar 

  41. Han XY, Zhao DL, Meng WJ, Yang HX, Wu YQ, Gao RZ, Yang Y, Pu H. Hollow tremella-like graphene sphere/SnO2 composite for high performance Li-ion battery anodes. Ceram Int. 2019;45:16244. https://doi.org/10.1016/j.ceramint.2019.05.146.

    Article  CAS  Google Scholar 

  42. Liu B, Shioyama H, Akita T, Xu Q. Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc. 2008;130(16):5390. https://doi.org/10.1021/ja7106146.

    Article  CAS  Google Scholar 

  43. Guo Y, Zeng X, Zhang Y, Dai Z, Fan H, Huang Y, Zhang W, Zhang H, Lu J, Huo F, Yan Q. Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries. ACS Appl Mater Interfaces. 2017;9:17172. https://doi.org/10.1021/acsami.7b04561.

    Article  CAS  Google Scholar 

  44. Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy. 2016;1:1. https://doi.org/10.1038/nenergy.2016.71.

    Article  CAS  Google Scholar 

  45. Xu Y, Liu Q, Zhu Y, Liu Y, Langrock A, Zachariah MR, Wang C. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013;13:470. https://doi.org/10.1021/nl303823k.

    Article  CAS  Google Scholar 

  46. Hong YJ, Son MY, Kang YC. One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv Mater. 2013;25:2279. https://doi.org/10.1002/adma.201204506.

    Article  CAS  Google Scholar 

  47. Fleaca CT, Dumitrache F, Sandu I, Dutu E, Ilie A, Banici AM, Vasile E, Vlaic C, Bund A, Prodan G. Laser pyrolysis synthesis of Sn-Fe-N@polycarbosilazane nanocomposites, characterization and evaluation as energy storage materials. Appl Phys A Mater Sci Process. 2017;123:1. https://doi.org/10.1007/s00339-017-1300-z.

    Article  CAS  Google Scholar 

  48. Santos GDOS, Vasconcelos VM, da Silva RS, Rodrigo MA, Eguiluz KIB, Salazar-Band AR. New laser-based method for the synthesis of stable and active Ti/SnO2-Sb anodes. Electrochim Acta. 2020;332:135478. https://doi.org/10.1016/j.electacta.2019.135478.

    Article  CAS  Google Scholar 

  49. Wang LP, Leconte Y, Feng Z, Wei C, Zhao Y, Ma Q, Xu W, Bourrioux S, Azais P, Srinivasan M, Xu ZJ. Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv Mater. 2017;29(6):1603286. https://doi.org/10.1002/adma.201603286.

    Article  CAS  Google Scholar 

  50. Gao S, Huang H, Wu A, Yu J, Gao J, Dong X, Liu C, Cao G. Formation of Sn–M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries. J Solid State Chem. 2016;242:127. https://doi.org/10.1016/j.jssc.2016.07.003.

    Article  CAS  Google Scholar 

  51. Gao S, Wu AM, Jin XZ, Ye F, Dong XL, Yu JY, Huang H. Nanostructured Sn–M (M=Cu, Mg and Fe) intermetallic alloys and their electrochemical activity as anode electrodes in a Li-ion battery. J Alloys Compd. 2017;706:401. https://doi.org/10.1016/j.jallcom.2017.02.191.

    Article  CAS  Google Scholar 

  52. Wang Y, Liu Y, Liu Y, Shen Q, Chen C, Qiu F, Li P, Jiao L, Qu X. Recent advances in electrospun electrode materials for sodium-ion batteries. J Energy Chem. 2021;54:225. https://doi.org/10.1016/j.jechem.2020.05.065.

    Article  CAS  Google Scholar 

  53. Zhou G, Xu L, Hu G, Mai L, Cui Y. Nanowires for electrochemical energy storage. Chem Rev. 2019;119:11042. https://doi.org/10.1021/acs.chemrev.9b00326.

    Article  CAS  Google Scholar 

  54. Liu XY, Wang KX, Chen JS. Template-directed metal oxides for electrochemical energy storage. Energy Storage Mater. 2016;3:1. https://doi.org/10.1016/j.ensm.2015.12.002.

    Article  Google Scholar 

  55. Shafiei M, Alpas AT. Electrochemical performance of a tin-coated carbon fibre electrode for rechargeable lithium-ion batteries. J Power Sources. 2011;196:7771. https://doi.org/10.1016/j.jpowsour.2011.04.053.

    Article  CAS  Google Scholar 

  56. Yao J, Takasaki T, Nishimura K, Mukai T, Sakai T. Preparation and electrode performance of fiber-type Cu-Sn negative electrode for Li-ion battery. J Electrochem Soc. 2013;160(6):A980. https://doi.org/10.1149/2.150306jes.

    Article  CAS  Google Scholar 

  57. Gu Y, Wu F, Wang Y. Confined volume change in Sn-Co-C ternary tube-in-tube composites for high-capacity and long-life lithium storage. Adv Funct Mater. 2013;23:893. https://doi.org/10.1002/adfm.201202136.

    Article  CAS  Google Scholar 

  58. Wang Y, Wu M, Zheng J, Lee JY. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem Mater. 2009;21:3210. https://doi.org/10.1021/cm900702d.

    Article  CAS  Google Scholar 

  59. Chen J, Yang L, Fang S, Hirano SI. Ordered mesoporous Sn–C composite as an anode material for lithium ion batteries. Electrochem Commun. 2011;13:848. https://doi.org/10.1016/j.elecom.2011.05.019.

    Article  CAS  Google Scholar 

  60. Chen J, Yang L, Fang S, Hirano SI, Tachibana K. Three-dimensional core-shell Cu@Cu6Sn5 nanowires as the anode material for lithium ion batteries. J Power Sources. 2012;199:341. https://doi.org/10.1016/j.jpowsour.2011.10.043.

    Article  CAS  Google Scholar 

  61. Ye X, Lin Z, Liang S, Huang X, Qiu X, Qiu Y, Liu X, Xie D, Deng H, Xiong X, Lin Z. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett. 2019;19:1860. https://doi.org/10.1021/acs.nanolett.8b04944.

    Article  CAS  Google Scholar 

  62. Wang K, Huang J. A bioinspired three-dimensional nanofibrous Cu–nanoparticle/SnO2/carbon composite as an anodic material for lithium-ion battery. Appl Surf Sci. 2019;476:293. https://doi.org/10.1016/j.apsusc.2019.01.094.

    Article  CAS  Google Scholar 

  63. Tao X, Wu R, Xia Y, Huang H, Chai W, Feng T, Gan Y, Zhang W. Biotemplated fabrication of Sn@C anode materials based on the unique metal biosorption behavior of microalgae. ACS Appl Mater Interfaces. 2014;6:3696. https://doi.org/10.1021/am500020e.

    Article  CAS  Google Scholar 

  64. Du X, Yang T, Lin J, Feng T, Zhu J, Lu L, Xu Y, Wang J. Microwave-assisted synthesis of SnO2@polypyrrole nanotubes and their pyrolyzed composite as anode for lithium-ion batteries. ACS Appl Mater Interfaces. 2016;8:15598. https://doi.org/10.1021/acsami.6b03332.

    Article  CAS  Google Scholar 

  65. Niu C, Meng J, Wang X, Han C, Yan M, Zhao K, Xu X, Ren W, Zhao Y, Xu L, Zhang Q, Zhao D, Mai L. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun. 2015;6:1. https://doi.org/10.1038/ncomms8402.

    Article  Google Scholar 

  66. Yu Y, Gu L, Wang C, Dhanabalan A, van Aken PA, Maier J. Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Edn. 2009;48(35):6485. https://doi.org/10.1002/anie.200901723.

    Article  CAS  Google Scholar 

  67. Yu Y, Gu L, Zhu C, Van Aken PA, Maier J. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc. 2009;131:15984. https://doi.org/10.1021/ja906261c.

    Article  CAS  Google Scholar 

  68. Lee JH, Oh SH, Jeong SY, Kang YC, Cho JS. Rattle-type porous Sn/C composite fibers with uniformly distributed nanovoids containing metallic Sn nanoparticles for high-performance anode materials in lithium-ion batteries. Nanoscale. 2018;10(45):21483. https://doi.org/10.1039/C8NR06075D.

    Article  CAS  Google Scholar 

  69. Dylla AG, Henkelman G, Stevenson KJ. Lithium insertion in nanostructured TiO2(B) architectures. Acc Chem Res. 2013;46:1104. https://doi.org/10.1021/ar300176y.

    Article  CAS  Google Scholar 

  70. Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C. Pipe-wire TiO2-Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 2017;17:3830. https://doi.org/10.1021/acs.nanolett.7b01152.

    Article  CAS  Google Scholar 

  71. Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete ML, Croce F. High-performance Sn@carbon nanocomposite anode for lithium batteries. J Power Sources. 2013;226:241. https://doi.org/10.1016/j.jpowsour.2012.11.004.

    Article  CAS  Google Scholar 

  72. Wang H, Lu X, Li L, Li B, Cao D, Wu Q, Li Z, Yang G, Guo B, Niu C. Synthesis of SnO2: versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries. Nanoscale. 2016;8:7595. https://doi.org/10.1039/C5NR09305H.

    Article  CAS  Google Scholar 

  73. Xu Z, Fan L, Ni X, Han J, Guo R. Sn-encapsulated N-doped porous carbon fibers for enhancing lithium-ion battery performance. RSC Adv. 2019;9(16):8753. https://doi.org/10.1039/C8RA10201E.

    Article  CAS  Google Scholar 

  74. Liu CJ, Huang H, Cao GZ, Xue FH, Paredes Camacho RA, Dong XL. Enhanced electrochemical stability of Sn–carbon nanotube nanocapsules as lithium-ion battery anode. Electrochim Acta. 2014;144:376. https://doi.org/10.1016/j.electacta.2014.07.068.

    Article  CAS  Google Scholar 

  75. Zhao S, Sewell CD, Liu R, Jia S, Wang Z, He Y, Yuan K, Jin H, Wang S, Liu X, Lin Z. SnO2 as advanced anode of alkali-ion batteries: inhibiting Sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility. Adv Energy Mater. 2020;10(6):1902657. https://doi.org/10.1002/aenm.201902657.

    Article  CAS  Google Scholar 

  76. Zhang L, Zhao K, Yu R, Yan M, Xu W, Dong Y, Ren W, Xu X, Tang C, Mai L. Phosphorus enhanced intermolecular interactions of SnO2 and graphene as an ultrastable lithium battery anode. Small. 2017;13:25. https://doi.org/10.1002/smll.201603973.

    Article  CAS  Google Scholar 

  77. Seong CY, Jin X, Kim DK, Hwang T, Piao Y. Hydrothermal synthesis of uniform tin oxide nanoparticles on reduced activated graphene oxide as anode material for lithium-ion batteries. J Electroanal Chem. 2019;845:6. https://doi.org/10.1016/j.jelechem.2019.05.028.

    Article  CAS  Google Scholar 

  78. Xu Z, Yue W, Yuan X, Chen X. Exceptional anodic performance of Sb-doped SnO2 nanoparticles on electrochemically exfoliated graphene for lithium-ion batteries. J Alloys Compd. 2019;795:168. https://doi.org/10.1016/j.jallcom.2019.05.009.

    Article  CAS  Google Scholar 

  79. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339. https://doi.org/10.1021/ja01539a017?journalCode=jacsat.

    Article  CAS  Google Scholar 

  80. Zhang M, Sun Z, Zhang T, Sui D, Ma Y, Chen Y. Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries. Carbon. 2016;102:32. https://doi.org/10.1016/j.carbon.2016.02.032.

    Article  CAS  Google Scholar 

  81. He C, Wang C, Li F, Wang X, Zhou Y, Wu P. Confining SnSe nanobelts in 3D rGO aerogel for achieving stable and fast lithium storage. Mater Res Bull. 2019;115:80. https://doi.org/10.1016/j.materresbull.2019.03.013.

    Article  Google Scholar 

  82. Gong C, Liu B, Zhang Y, Yao M, Wei Y, Li Q, Liu B, Liu R, Yao Z, Cui T, Zou B. Green synthesis of 3D SnO2/graphene aerogels and their application in lithium-ion batteries. RSC Adv. 2015;5:39746. https://doi.org/10.1039/C5RA05711F.

    Article  CAS  Google Scholar 

  83. Cui J, Yao S, Huang JQ, Qin L, Chong WG, Sadighi Z, Huang J, Wang Z, Kim JK. Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. Energy Storage Mater. 2017;9:85. https://doi.org/10.1016/j.ensm.2017.06.006.

    Article  Google Scholar 

  84. Zhang Z, Weng L, Rao Q, Yang S, Hu J, Cai J, Min Y. Highly-dispersed iron oxide nanoparticles anchored on crumpled nitrogen-doped MXene nanosheets as anode for Li-ion batteries with enhanced cyclic and rate performance. J Power Sources. 2019;439:227107.

    Article  CAS  Google Scholar 

  85. Kong Y, Ma Z, Ye Y, He G, Sun Y, Zuo X, Xiao X, Nan J. Nanosized amorphous SnO2 particles anchored in the wheat straw carbon substrate as the stabilized anode material of Lithium-ion batteries. ACS Appl Energy Mater. 2018;1:7065. https://doi.org/10.1021/acsaem.8b01408.

    Article  CAS  Google Scholar 

  86. Li Y, Meng Q, Ma J, Zhu C, Cui J, Chen Z, Guo Z, Zhang T, Zhu S, Zhang D. Bioinspired carbon/ SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl Mater Interfaces. 2015;7:11146. https://doi.org/10.1021/acsami.5b02774.

    Article  CAS  Google Scholar 

  87. Wang Z, Dong K, Wang D, Chen F, Luo S, Liu Y, He C, Shi C, Zhao N. Monodisperse multicore-shell SnSb@SnOx/SbOx@ nanoparticles space-confined in 3D porous carbon networks as high-performance anode for Li-ion and Na-ion batteries. Chem Eng J. 2019;371:356. https://doi.org/10.1016/j.cej.2019.04.045.

    Article  CAS  Google Scholar 

  88. Liu M, Fan H, Zhuo O, Chen J, Wu Q, Yang L, Peng L, Wang X, Che R, Hu Z. A general strategy to construct yolk-shelled metal oxides inside carbon nanocages for high-stable lithium-ion battery anodes. Nano Energy. 2020; 68: 104368. https://doi.org/10.1016/j.nanoen.2019.104368.

  89. Shi H, Fang Z, Zhang X, Li F, Tang Y, Zhou Y, Wu P, Yu G. Double-network nanostructured hydrogel-derived ultrafine Sn–Fe alloy in three-dimensional carbon framework for enhanced Lithium storage. Nano Lett. 2018;18:3193. https://doi.org/10.1021/acs.nanolett.8b00898.

    Article  CAS  Google Scholar 

  90. Wang F, Jiao H, He E, Yang S, Chen Y, Zhao M, Song X. Facile synthesis of ultrafine SnO2 nanoparticles embedded in carbon networks as a high-performance anode for lithium-ion batteries. J Power Sources. 2016;326:78. https://doi.org/10.1016/j.jpowsour.2016.06.120.

    Article  CAS  Google Scholar 

  91. Gurunathan P, Ette PM, Ramesha K. Synthesis of hierarchically porous SnO2 microspheres and performance evaluation as Li-ion battery anode by using different binders. ACS Appl Mater Interfaces. 2014;6:16556. https://doi.org/10.1021/am502852x.

    Article  CAS  Google Scholar 

  92. Ding K, Han J, Gao X, Zhou L, Qu R. Preparation of tin oxide particles using tin-based coordination polymer asubstance of dioctyltin oxide as the starting material by a calcination method. Mater Chem Phys. 2019;232:354. https://doi.org/10.1016/j.matchemphys.2019.04.091.

    Article  CAS  Google Scholar 

  93. Liang T, Hu R, Zhang H, Zhang H, Wang H, Ouyang Y, Liu J, Yang L, Zhu M. A scalable ternary SnO2–Co–C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries. J Mater Chem A. 2018;6:7206. https://doi.org/10.1039/C8TA00957K.

    Article  CAS  Google Scholar 

  94. Lee HY, Jang SW, Lee SM, Lee SJ, Baik HK. Lithium storage properties of nanocrystalline Ni3Sn4 alloys prepared by mechanical alloying. J Power Sources. 2002;112:8. https://doi.org/10.1016/S0378-7753(02)00047-2.

    Article  CAS  Google Scholar 

  95. Ouyang L, Cao Z, Wang H, Hu R, Zhu M. Application of dielectric barrier discharge plasma-assisted milling in energy storage materials—a review. J Alloys Compd. 2017;691:422. https://doi.org/10.1016/j.jallcom.2016.08.179.

    Article  CAS  Google Scholar 

  96. Liu H, Hu R, Zeng M, Liu J, Zhu M. Enhancing the performance of Sn–C nanocomposite as lithium ion anode by discharge plasma assisted milling. J Mater Chem. 2012;22(16):8022. https://doi.org/10.1039/C2JM15926K.

    Article  CAS  Google Scholar 

  97. Zhang H, Hu R, Liu H, Sun W, Lu Z, Liu J, Yang L, Zhang Y, Zhu M. A spherical Sn–Fe3O4@graphite composite as a long-life and high-rate-capability anode for lithium ion batteries. J Mater Chem A. 2016;4:10321. https://doi.org/10.1039/C6TA02442D.

    Article  CAS  Google Scholar 

  98. Liu H, Hu R, Sun W, Zeng M, Liu J, Yang L, Zhu M. Sn@SnOx/C nanocomposites prepared by oxygen plasma-assisted milling as cyclic durable anodes for lithium ion batteries. J Power Sources. 2013;242:114. https://doi.org/10.1016/j.jpowsour.2013.05.087.

    Article  CAS  Google Scholar 

  99. Cheng D, Liu J, Li X, Hu R, Zeng M, Yang L, Zhu M. A highly stable (SnOx–Sn)@few layered graphene composite anode of Sodium-ion batteries synthesized by oxygen plasma assisted milling. J Power Sources. 2017;350:1. https://doi.org/10.1016/j.jpowsour.2017.03.043.

    Article  CAS  Google Scholar 

  100. Ferguson PP, Martine ML, George AE, Dahn JR. Studies of tin-transition metal-carbon and tin-cobalt-transition metal-carbon negative electrode materials prepared by mechanical attrition. J Power Sources. 2009;194:794. https://doi.org/10.1016/j.jpowsour.2009.05.031.

    Article  CAS  Google Scholar 

  101. Todd ADW, Mar RE, Dahn JR. Tin-transition metal-carbon systems for lithium-ion battery negative electrodes. J Electrochem Soc. 2007;154:A597. https://doi.org/10.1149/1.2724741.

    Article  CAS  Google Scholar 

  102. Chang WS, Park CM, Sohn HJ. Electrochemical performance of pyrolyzed polyacrylonitrile (PAN) based Sn/C composite anode for Li-ion batteries. J Electroanal Chem. 2012;671:67. https://doi.org/10.1016/j.jelechem.2012.02.024.

    Article  CAS  Google Scholar 

  103. Liu H, Hu R, Huang C, Sun W, Zhang H, Zhu M. Toward cyclic durable core/shell nanostructure of Sn–C composite anodes for stable lithium storage by simulating its lithiation-induced internal strain. J Alloys Compd. 2017;704:348. https://doi.org/10.1016/j.jallcom.2017.02.032.

    Article  CAS  Google Scholar 

  104. Hassoun J, Ochal P, Panero S, Mulas G, Bonatto Minella C, Scrosati B. The effect of CoSn/CoSn2 phase ratio on the electrochemical behaviour of Sn40Co40C20 ternary alloy electrodes in lithium cells. J Power Sources. 2008;180:568. https://doi.org/10.1016/j.jpowsour.2008.01.059.

    Article  CAS  Google Scholar 

  105. Ferguson PP, Le DB, Todd ADW, Martine ML, Trussler S, Obrovac MN, Dahn JR. Nanostructured Sn30Co30C40 alloys for lithium-ion battery negative electrodes prepared by horizontal roller milling. J Alloys Compd. 2014;595:138. https://doi.org/10.1016/j.jallcom.2014.01.159.

    Article  CAS  Google Scholar 

  106. Du G, Zhong C, Zhang P, Guo Z, Chen Z, Liu H. Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochim Acta. 2010;55:2582. https://doi.org/10.1016/j.electacta.2009.12.031.

    Article  CAS  Google Scholar 

  107. Hu R, Ouyang Y, Liang T, Wang H, Liu J, Chen J, Yang C, Yang L, Zhu M. Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial Coulombic efficiency and stable capacities for lithium storage. Adv Mater. 2017;29(13):1605006. https://doi.org/10.1002/adma.201605006.

    Article  CAS  Google Scholar 

  108. Hu R, Ouyang Y, Chen D, Wang H, Chen Y, Zhu M, Liu M. Inhibiting Sn coarsening to enhance the reversibility of conversion reaction in lithiated SnO2 anodes by application of super-elastic NiTi films. Acta Mater. 2016;109:248. https://doi.org/10.1016/j.actamat.2016.02.060.

    Article  CAS  Google Scholar 

  109. Wen G, Liu H, Liang T, Ouyang Y, Tan L, Hu R, Liu J, Zhang Y, Zhu M. Good cycling stability and high initial efficiency demonstrated in full cells with limited lithium source for an advanced SnO2-Co-C composite anode. Electrochim Acta. 2020;334:135640. https://doi.org/10.1016/j.electacta.2020.135640.

    Article  CAS  Google Scholar 

  110. Xia SB, Li FS, Shen X, Li X, Cai XL, Liu JJ. Heterostructural SnO/SnO2@C composite fabricated from tin-based coordination polymer as high-performance anode materials for lithium ion batteries. Mater Lett. 2019;251:94. https://doi.org/10.1016/j.matlet.2019.05.051.

    Article  CAS  Google Scholar 

  111. Han M, Mu Y, Yu J. Pressure-induced synthesis of homogeneously dispersed Sn/SnO2/C nanocomposites as advanced anodes for lithium-ion batteries. Energy Technol. 2020;8(3):1901202. https://doi.org/10.1002/ente.201901202.

    Article  CAS  Google Scholar 

  112. Weeks JA, Sun HH, Srinivasan HS, Burrow JN, Guerrera JV, Meyerson ML, Dolocan A, Heller A, Mullins CB. Facile synthesis of a tin oxide–carbon composite lithium-ion battery anode with high capacity retention. ACS Appl Energy Mater. 2019;2:7244. https://doi.org/10.1021/acsaem.9b01205.

    Article  CAS  Google Scholar 

  113. Wang H, Wang J, Xie S, Liu W, Niu C. Template synthesis of graphitic hollow carbon nanoballs as supports for SnO: X nanoparticles towards enhanced lithium storage performance. Nanoscale. 2018;10:6159. https://doi.org/10.1039/C8NR00405F.

    Article  CAS  Google Scholar 

  114. Huang F, Yuan Z, Zhan H, Zhou Y, Sun J. A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries. Mater Lett. 2003;57:3341. https://doi.org/10.1016/S0167-577X(03)00070-3.

    Article  CAS  Google Scholar 

  115. Wang J, Xie S, Cao D, Lu X, Meng L, Yang G, Wang H. Facile synthesis of ultrafine SnO2 nanoparticles on graphene nanosheets via thermal decomposition of tin-octoate as anode for lithium ion batteries. J Nanopart Res. 2016;18:1. https://doi.org/10.1007/s11051-016-3590-z.

    Article  CAS  Google Scholar 

  116. Zhao Q, Zhang Z, Dong T, Xie Y. Facile synthesis and catalytic property of porous tin dioxide nanostructures. J Phys Chem B. 2006;110:15152. https://doi.org/10.1021/jp0620522.

    Article  CAS  Google Scholar 

  117. Deng Y, Chen W, Li B, Wang C, Kuang T, Li Y. Physical vapor deposition technology for coated cutting tools: a review. Ceram Int. 2020;46:18373. https://doi.org/10.1016/j.ceramint.2020.04.168.

    Article  CAS  Google Scholar 

  118. Hu R, Zhu M, Wang H, Liu J, Ouyang L, Zou J. Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries. Acta Mater. 2012;60:4695. https://doi.org/10.1016/j.actamat.2012.05.015.

    Article  CAS  Google Scholar 

  119. Fan S, Zhang J, Teng X, Wang X, Li H, Li Q, Xu J, Cao D, Li S, Hu H. Self-supported amorphous SnO2/TiO2 nanocomposite films with improved electrochemical performance for lithium-ion batteries. J Electrochem Soc. 2019;166(13):A3072. https://doi.org/10.1149/2.0171914jes.

    Article  CAS  Google Scholar 

  120. Jiang Y, Li Y, Zhou P, Lan Z, Lu Y, Wu C, Yan M. Ultrafast, highly reversible, and cycle-stable lithium storage boosted by pseudocapacitance in Sn-based alloying anodes. Adv Mater. 2017;29:23. https://doi.org/10.1002/adma.201606499.

    Article  CAS  Google Scholar 

  121. Zhao B, Mattelaer F, Kint J, Werbrouck A, Henderick L, Minjauw M, Dendooven J, Detavernier C. Atomic layer deposition of ZnO-SnO2 composite thin film: the influence of structure, composition and crystallinity on lithium-ion battery performance. Electrochim Acta. 2019;320:134604. https://doi.org/10.1016/j.electacta.2019.134604.

    Article  CAS  Google Scholar 

  122. Zhao B, Dhara A, Dendooven J, Detavernier C. Atomic layer deposition of SnO2-based composite anodes for thin-film lithium-ion batteries. Front Energy Res. 2020;8:609417. https://doi.org/10.3389/fenrg.2020.609417.

    Article  Google Scholar 

  123. Dai L, Zhong X, Zou J, Fu B, Su Y, Ren C, Wang J, Zhong G. Highly ordered SnO2 nanopillar array as binder-free anodes for long-life and high-rate Li-ion batteries. Nanomater. 2021;11(5):609417. https://doi.org/10.3390/nano11051307.

    Article  CAS  Google Scholar 

  124. Ferrar A, Arbizzani C, Damen L, Guidotti M, Lazzari M, Vergottini FG, Inguanta R, Piazza S, Sunseri C, Mastragostino M. High-performing Sn-Co nanowire electrodes as anodes for lithium-ion batteries. J Power Sources. 2012;211:103. https://doi.org/10.1016/j.jpowersour.2012.03.066.

    Article  Google Scholar 

  125. Bazin L, Mitra S, Taberna PL, Poizot P, Gressier M, Menu MJ, Barnabé A, Simon P, Tarascon JM. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries. J Power Sources. 2009;188:578. https://doi.org/10.1016/j.jpowsour.2008.12.025.

    Article  CAS  Google Scholar 

  126. Peng H, Li R, Hu J, Deng W, Pan F. Core-shell Sn-Ni-Cu-alloy@carbon nanorods to array as three-dimensional anode by nanoelectrodeposition for high-performance lithium ion batteries. ACS Appl Mater Interfaces. 2016;8:12221. https://doi.org/10.1021/acsami.6b03383.

    Article  CAS  Google Scholar 

  127. Ke FS, Huang L, Solomon BC, Wei GZ, Xue LJ, Zhang B, Li JT, Zhou XD, Sun SG. Three-dimensional nanoarchitecture of Sn–Sb–Co alloy as an anode of lithium-ion batteries with excellent lithium storage performance. J Mater Chem. 2012;22(34):17511. https://doi.org/10.1039/C2JM32162A.

    Article  CAS  Google Scholar 

  128. Li Q, Hu S, Wang H, Wang F, Zhong X, Wang X. Study of copper foam-supported Sn thin film as a high-capacity anode for lithium-ion batteries. Electrochim Acta. 2009;54(24):5884. https://doi.org/10.1016/j.electacta.2009.05.051.

    Article  CAS  Google Scholar 

  129. Yang C, Zhang D, Zhao Y, Lu Y, Wang L, Goodenough JB. Nickel foam supported Sn-Co alloy film as anode for lithium ion batteries. J Power Sources. 2011;196:10673. https://doi.org/10.1016/j.jpowsour.2011.08.089.

    Article  CAS  Google Scholar 

  130. Wang YN, Jiang JY, Liu XX, Liu X, Xiang Y, Wu R, Chen Y, Chen JS. Local confinement and alloy/dealloy activation of Sn–Cu nanoarrays for high-performance lithium-ion battery. Electrochim Acta. 2020;336:135690. https://doi.org/10.1016/j.electacta.2020.135690.

    Article  CAS  Google Scholar 

  131. Wu H, Zheng L, Liu W, Xia X, Xiao C, Xie J, Su L, Wang L, Du N. Three-dimensional porous copper framework supported group IVA element materials as sodium-ion battery anode materials. J Alloys Compd. 2019;771:169. https://doi.org/10.1016/j.jallcom.2018.08.248.

    Article  CAS  Google Scholar 

  132. Huang L, Wei HB, Ke FS, Fan XY, Li JT, Sun SG. Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn-Ni alloy electrodes. Electrochim Acta. 2009;54:2693. https://doi.org/10.1016/j.electacta.2008.11.044.

    Article  CAS  Google Scholar 

  133. Chen X, Guo J, Gerasopoulos K, Langrock A, Brown A, Ghodssi R, Culver JN, Wang C. 3D tin anodes prepared by electrodeposition on a virus scaffold. J Power Sources. 2012;211:129. https://doi.org/10.1016/j.jpowsour.2012.03.070.

    Article  CAS  Google Scholar 

  134. Shin HC, Liu M. Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries. Adv Funct Mater. 2005;15:582. https://doi.org/10.1002/adfm.200305165.

    Article  CAS  Google Scholar 

  135. Zhuo K, Jeong MG, Chung CH. Highly porous dendritic Ni–Sn anodes for lithium-ion batteries. J Power Sources. 2013;244:601. https://doi.org/10.1016/j.jpowsour.2013.01.055.

    Article  CAS  Google Scholar 

  136. Liu X, Zhang R, Yu W, Yang Y, Wang Z, Zhang C, Bando Y, Golberg D, Wang X, Ding Y. Three-dimensional electrode with conductive Cu framework for stable and fast Li-ion storage. Energy Storage Mater. 2018;11:83. https://doi.org/10.1016/j.ensm.2017.09.008.

    Article  Google Scholar 

  137. Luo Z, Xu J, Yuan B, Hu R, Yang L, Gao Y, Zhu M. 3D hierarchical porous Cu-based composite current collector with enhanced ligaments for notably improved cycle stability of Sn anode in Li-ion batteries. ACS Appl Mater Interfaces. 2018;10(26):22050. https://doi.org/10.1021/acsami.8b04049.

    Article  CAS  Google Scholar 

  138. Jin S, Jiang Y, Ji H, Yu Y. Advanced 3D current collectors for lithium-based batteries. Adv Mater. 2018;30:1. https://doi.org/10.1002/adma.201802014.

    Article  CAS  Google Scholar 

  139. Kim M, Choi I, Kim JJ. Facile electrochemical synthesis of heterostructured amorphous-Sn@CuxO nanowire anode for Li-ion batteries with high stability and rate-performance. Appl Surf Sci. 2019;479:225. https://doi.org/10.1016/j.apsusc.2019.02.081.

    Article  CAS  Google Scholar 

  140. Cao Z, Yang H, Dou P, Wang C, Zheng J, Xu X. Synthesis of three-dimensional hollow SnO2@PPy nanotube arrays via template-assisted method and chemical vapor-phase polymerization as high performance anodes for lithium-ion batteries. Electrochim Acta. 2016;209:700. https://doi.org/10.1016/j.electacta.2016.01.158.

    Article  CAS  Google Scholar 

  141. Xu CX, Jiang JJ. Designing electrolytes for lithium metal batteries with rational interface stability. Rare Met. 2021;40(2):243. https://doi.org/10.1007/s12598-020-01629-5.

    Article  CAS  Google Scholar 

  142. Ren W, Kong D, Cheng C. Three-dimensional tin nanoparticles embedded in carbon nanotubes on carbon cloth as a flexible anode for lithium-ion batteries. ChemElectroChem. 2014;1:2064. https://doi.org/10.1002/celc.201402237.

    Article  CAS  Google Scholar 

  143. Fan L, Guo Z, Zhang Y, Zhang X, Wang M, Yin Y, Zhang N, Sun K. Carbon coated porous SnO2 nanosheet arrays on carbon cloth towards enhanced lithium storage performance. Mater Today Energy. 2019;14:100344. https://doi.org/10.1016/j.mtener.2019.100344.

    Article  Google Scholar 

  144. Min X, Sun B, Chen S, Fang M, Wu X, Liu Y, Abdelkader A, Huang Z, Liu T, Xi K, Kumar RV. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 2019;16:597. https://doi.org/10.1016/j.ensm.2018.08.002.

    Article  Google Scholar 

  145. Han Q, Geng D, Han Z, Wang F, Li X, Deng Y, Zhang J, Niu S, Mu Y. Preparation of carbon cloth supported Sn thin film for structural lithium-ion battery anodes. J Electroanal Chem. 2018;822:17. https://doi.org/10.1016/j.jelechem.2018.05.006.

    Article  CAS  Google Scholar 

  146. Lan X, Cui J, Yu H, Xiong XY, Tan L, Hu R. Nanostructured Sn-Mo multilayer film anode with stable electrode-interfaces for long-cycle lithium storage. J Power Sources. 2021;509:230391. https://doi.org/10.1016/j.jpowsour.2021.230391.

    Article  CAS  Google Scholar 

  147. Guo C, Yang Q, Liang J, Wang L, Zhu Y, Qian Y. Sn nanoparticles uniformly dispersed in N-doped hollow carbon nanospheres as anode for lithium-ion batteries. Mater Lett. 2016;184:332. https://doi.org/10.1016/j.matlet.2016.08.053.

    Article  CAS  Google Scholar 

  148. Hou H, Tang X, Guo M, Shi Y, Dou P, Xu X. Facile preparation of Sn hollow nanospheres anodes for lithium-ion batteries by galvanic replacement. Mater Lett. 2014;128:408. https://doi.org/10.1016/j.matlet.2014.04.187.

    Article  CAS  Google Scholar 

  149. Wang X, Li Z, Zhang Z, Li Q, Guo E, Wang C, Yin L. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries. Nanoscale. 2015;7(8):3604. https://doi.org/10.1039/C4NR05789A.

    Article  CAS  Google Scholar 

  150. Xue P, Li Q, Gong W, Sun Z, Wang H, Zhu K, Guo C, Hong G, Xu W, Sun J, Yao Y, Liu Z. Structure-induced partial phase transformation endows hollow TiO2/TiN heterostructure fibers stacked with nanosheet arrays with extraordinary sodium storage performance. J Mater Chem A. 2021;9(20):12109. https://doi.org/10.1039/D1TA01729B.

    Article  CAS  Google Scholar 

  151. Mao O, Dunlap RA, Dahn JR. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries—I The Sn2Fe–C system. J Electrochem Soc. 1999;146(2):405. https://doi.org/10.1149/1.1391622.

    Article  CAS  Google Scholar 

  152. Du X, Zhang H, Lan X, Yuan B, Hu R. Sn alloy and graphite addition to enhance initial coulombic efficiency and cycling stability of SiO anodes for Li-ion batteries. Energy Environ Mater. 2022;5(1):353. https://doi.org/10.1002/eem2.12186.

    Article  CAS  Google Scholar 

  153. Xin F, Wang X, Bai J, Wen W, Tian H, Wang C, Han W. A lithiation/delithiation mechanism of monodispersed MSn5 (M=Fe, Co and FeCo) nanospheres. J Mater Chem A. 2015;3:7170. https://doi.org/10.1039/C4TA06960A.

    Article  CAS  Google Scholar 

  154. Wang S, Yi Z, Wang X, Sun Q, Cheng Y, Wang L. A rational design to buffer volume expansion of CoSn intermetallic in lithium and sodium storage: multicore-shell versus monocore-shell. Energy Storage Mater. 2019;23:629. https://doi.org/10.1016/j.ensm.2019.03.008.

    Article  Google Scholar 

  155. Li X, He X, Xu Y, Huang L, Li J, Sun S, Zhao J. Superiority of the bi-phasic mixture of a tin-based alloy nanocomposite as the anode for lithium ion batteries. J Mater Chem A. 2015;3:3794. https://doi.org/10.1039/c4ta06862a.

    Article  CAS  Google Scholar 

  156. Liu J, Wen Y, Van Aken PA, Maier J, Yu Y. Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett. 2014;14:6387. https://doi.org/10.1021/nl5028606.

    Article  CAS  Google Scholar 

  157. Fan X, Tang X, Ma D, Bi P, Jiang A, Zhu J, Xu X. Novel hollow Sn-Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction. J Solid State Electrochem. 2014;18:1137. https://doi.org/10.1007/s10008-013-2370-2.

    Article  CAS  Google Scholar 

  158. Lee JM, Chang WS, Yu BC, Kim H, Im D, Doo SG, Sohn HJ. Enhancement of cyclability using recombination reaction of Cu for Sn2Fe nanocomposite anode for lithium-ion batteries. Electrochem Commun. 2010;12:928. https://doi.org/10.1016/j.elecom.2010.04.023.

    Article  CAS  Google Scholar 

  159. Fan S, Lim LY, Tay YY, Pramana SS, Rui X, Samani MK, Yan Q, Tay BK, Toney MF, Hng HH. Rapid fabrication of a novel Sn-Ge alloy: structure-property relationship and its enhanced lithium storage properties. J Mater Chem A. 2013;1(46):14577. https://doi.org/10.1039/C3TA13315J.

    Article  CAS  Google Scholar 

  160. He M, Walter M, Kravchyk KV, Erni R, Widmer R, Kovalenko MV. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. Nanoscale. 2015;7:455. https://doi.org/10.1039/C4NR05604C.

    Article  CAS  Google Scholar 

  161. Yang R, Huang J, Zhao W, Lai W, Zhang X, Zheng J, Li X. Bubble assisted synthesis of Sn-Sb-Cu alloy hollow nanostructures and their improved lithium storage properties. J Power Sources. 2010;195(19):6811. https://doi.org/10.1016/j.jpowsour.2010.04.069.

    Article  CAS  Google Scholar 

  162. Tabuchi T, Hochgatterer N, Ogumi Z, Winter M. Ternary Sn-Sb-Co alloy film as new negative electrode for lithium-ion cells. J Power Sources. 2009;188:552. https://doi.org/10.1016/j.jpowsour.2008.11.116.

    Article  CAS  Google Scholar 

  163. Wang J, Wang L, Zhang S, Liang S, Liang X, Huang H, Zhou W, Guo J. Facile synthesis of iron-doped SnO2/reduced graphene oxide composite as high-performance anode material for lithium-ion batteries. J Alloys Compd. 2018;748:1013. https://doi.org/10.1016/j.jallcom.2018.03.155.

    Article  CAS  Google Scholar 

  164. Zhu YG, Wang Y, Han ZJ, Shi Y, Wong JI, Huang ZX, Ostrikov K, Yang HY. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)O13/G anodes. Nanoscale. 2014;6:15020. https://doi.org/10.1039/C4NR04736B.

    Article  CAS  Google Scholar 

  165. Lan X, Cui J, Zhang X, Hu R, Tan L, He J, Zhang H, Xiong XY, Yang X, Wu S, Zhu M. Boosting reversibility and stability of Li storage in SnO2-Mo multilayers: introduction of interfacial oxygen redistribution. Adv Mater. 2022;34:1. https://doi.org/10.1002/adma.202106366.

    Article  CAS  Google Scholar 

  166. Chen Y, Ge D, Zhang J, Chu R, Zheng J, Wu C, Zeng Y, Zhang Y, Guo H. Ultrafine Mo-doped SnO2 nanostructure and derivative Mo-doped Sn/C nanofibers for high-performance lithium-ion batteries. Nanoscale. 2018;10:17378. https://doi.org/10.1039/C8NR01195H.

    Article  CAS  Google Scholar 

  167. Park GD, Lee JK, Kang YC. Design and synthesis of Janus-structured mutually doped SnO2-Co3O4 hollow nanostructures as superior anode materials for lithium-ion batteries. J Mater Chem A. 2017;5:25319. https://doi.org/10.1039/C7TA08335A.

    Article  CAS  Google Scholar 

  168. Kwon SG, Chattopadhyay S, Koo B, Dos Santos Claro PC, Shibata T, Requejo FG, Giovanetti LJ, Liu Y, Johnson C, Prakapenka V, Lee B, Shevchenko EV. Oxidation induced doping of nanoparticles revealed by in situ X-ray absorption studies. Nano Lett. 2016;16:3738. https://doi.org/10.1021/acs.nanolett.6b01072.

    Article  CAS  Google Scholar 

  169. Wu CP, Xie KX, He JP, Wang QP, Ma JM, Yang S, Wang QH. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Met. 2021;40(1):48. https://doi.org/10.1007/s12598-020-01623-x.

    Article  CAS  Google Scholar 

  170. Cheng X, Liu H, Yuan H, Peng H, Tang C, Juang J, Zhang Q. A perspective on sustainable energy materials for lithium batteries. SusMat. 2021;1(1):38. https://doi.org/10.1002/sus2.4.

    Article  CAS  Google Scholar 

  171. Hu Z, Zhang J, Hao Z, Hao Q, Geng X, Zhao Y. Highly efficient organic photovoltaic devices using F-doped SnO2 anodes. Appl Phys Lett. 2011;98(12):123302. https://doi.org/10.1063/1.3569758.

    Article  CAS  Google Scholar 

  172. Sun J, Xiao L, Jiang S, Li G, Huang Y, Geng J. Fluorine-doped SnO2@graphene porous composite for high capacity lithium-ion batteries. Chem Mater. 2015;27(13):4594. https://doi.org/10.1021/acs.chemmater.5b00885.

    Article  CAS  Google Scholar 

  173. Meng T, Li B, Hu L, Yang H, Fan W, Zhang S, Liu P, Li M, Gu FL, Tong Y. Engineering of oxygen vacancy and electric-field effect by encapsulating lithium titanate in reduced graphene oxide for superior lithium ion storage. Small Methods. 2019;3:1. https://doi.org/10.1002/smtd.201900185.

    Article  CAS  Google Scholar 

  174. Feng Y, Bai C, Wu K, Dong H, Ke J, Huang X, Xiong D, He M. Fluorine-doped porous SnO2@C nanosheets as a high performance anode material for lithium ion batteries. J Alloys Compd. 2020;843:156085.

    Article  CAS  Google Scholar 

  175. Huang S, Wang M, Jia P, Wang B, Zhang J, Zhao Y. N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Mater. 2019;20:225. https://doi.org/10.1016/j.ensm.2018.11.024.

    Article  Google Scholar 

  176. Chen K, Wang X, Wang G, Wang B, Liu X, Bai J, Wang H. A new generation of high performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries. Chem Eng J. 2018;347:552. https://doi.org/10.1016/j.cej.2018.04.125.

    Article  CAS  Google Scholar 

  177. Pan Q, Zheng F, Ou X, Yang C, Xiong X, Liu M. MoS2 encapsulated SnO2-SnS/C nanosheets as a high performance anode material for lithium ion batteries. Chem Eng J. 2017;316:393. https://doi.org/10.1016/j.cej.2017.01.111.

    Article  CAS  Google Scholar 

  178. Li R, Miao C, Yu L, Zhang M, Xiao W. Novel self-assembled SnO2@SnS2 hybrid microspheres as potential anode materials for lithium-ion batteries. Mater Lett. 2020;272:127851. https://doi.org/10.1016/j.matlet.2020.127851.

    Article  CAS  Google Scholar 

  179. Cao L, Gao X, Zhang B, Ou X, Zhang J, Luo W-B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano. 2020;14(3):3610. https://doi.org/10.1021/acsnano.0c00020.

    Article  CAS  Google Scholar 

  180. Liu Y, Zhou T, Zheng Y, He Z, Xiao C, Pang WK, Tong W, Zou Y, Pan B, Guo Z, Xie Y. Local electric field facilitates high-performance Li-ion batteries. ACS Nano. 2017;11(8):8519. https://doi.org/10.1021/acsnano.7b04617.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52071144, 51831009 and 51621001) and Guangzhou key research and development program (No. 202103040001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Zong Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Lan, XX., Xiong, XY. et al. Review on modification routes for SnOx-based anodes for Li storage: morphological structure tuning and phase structure design. Rare Met. 42, 2840–2867 (2023). https://doi.org/10.1007/s12598-023-02279-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02279-z

Keywords

Navigation