Skip to main content
Log in

Preparation of quasi-isotropic thermal conductive composites by interconnecting spherical alumina and 2D boron nitride flakes

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Achieving thermal management composite material with isotropic thermal dissipation property by using an environmentally friendly and efficient method is one of the most challenging techniques as a traditional approach tending to form a horizontally arranged network within the polymer matrix or the preparation steps which are unduly cumbersome. What presented here is a close-stack thermally conductive three-dimensional (3D) hybrid network structure prepared by a simple and green strategy that intercalating the modified aluminum oxide (m-Al2O3) spheres of different sizes into the modified two-dimensional (2D) boron nitride (m-h-BN) flakes. An effective 3D network is created by the multi-dimensional fillers through volume exclusion and synergistic effects. The m-h-BN flakes facilitate in-plane heat transfer, while the variously sized m-Al2O3 spheres insert into the gaps between adjacent m-h-BN flakes, which is conducive to the heat transfer in the out-of-plane direction. Additionally, strong interactions between the m-Al2O3 and m-h-BN promote the effective heat flux inside the 3D hybrid network structure. The 3D hybrid composite displays favorable quasi-isotropic heat dissipation property (through-plane thermal conductivity of 2.2 W·m−1·K−1 and in-plane thermal conductivity of 11.6 W·m−1·K−1) in comparison with the single-filler composites. Furthermore, the hybrid-filler composite has excellent mechanical properties and thermal stability. The efficient heat dissipation capacity of the hybrid composite is further confirmed by a finite element simulation, which indicates that the sphere–flake hybrid structure possesses a higher thermal conductivity and faster thermal response performance than the single-filler system. The composite material has great potential in meeting the needs of emerging and advancing power systems.

Graphical abstract

摘要

由于传统的制备方法往往是在聚合物基体内形成水平排列的导热网络, 或者制备步骤过于繁琐, 通过环保高效的方法来获得具有各向同性散热性能的导热复合材料仍是最具挑战性的技术之一。本文采用一种简单且绿色的制备策略, 将不同尺寸的改性三氧化二铝(m-Al2O3)球插入到改性的二维氮化硼(m-h-BN)薄片中, 制备了一种致密叠置的导热三维混合网络结构。多维填充体通过其体积排除和协同效应从而构建了有效的三维网络。其中, m-h-BN片有利于面内传热, 而不同尺寸的m-Al2O3球嵌入到相邻m-h-BN片之间的间隙中, 有利于面外方向的传热。此外, m-Al2O3 和 m-h-BN 之间的强相互作用促进了 三维混合网络结构内的有效传热。与单填料复合材料相比, 三维杂化复合材料具有良好的准各向同性散热性能(面外导热系数为2.2 W·m−1·K−1, 面内导热系数为11.6 W·m−1·K−1)。此外, 该复合材料具有良好的力学性能和热稳定性。通过有限元模拟进一步验证了该复合材料的有效散热能力, 证明了球片复合结构具有比单一填料体系更高的导热系数和更快的热响应性能。该复合材料具有很大的潜力以满足新兴先进电力系统的需求。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dai W, Ma TF, Yan QW, Gao JY, Tan X, Lv L, Hou H, Wei QP, Yu JH, Wu JB, Yao YG, Du SY, Sun R, Jiang N, Wang Y, Kong J, Wong CP, Maruyama S, Lin CT. Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano. 2019;13(10):11561. https://doi.org/10.1021/acsnano.9b05163.

    Article  CAS  Google Scholar 

  2. Koo B, Goli P, Sumant AV, dos Santos Claro PC, Rajh T, Johnson CS, Balandin AA, Shevchenko EV. Toward lithium ion batteries with enhanced thermal conductivity. ACS Nano. 2014;8(7):7202. https://doi.org/10.1021/nn502212b.

    Article  CAS  Google Scholar 

  3. Hao ML, Li J, Park S, Moura S, Dames C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat Energy. 2018;3(10):899. https://doi.org/10.1038/s41560-018-0243-8.

    Article  CAS  Google Scholar 

  4. Chen J, Huang XY, Sun B, Jiang PK. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano. 2019;13(1):337. https://doi.org/10.1021/acsnano.8b06290.

    Article  CAS  Google Scholar 

  5. Dai W, Lv L, Ma TF, Wang XZ, Ying JF, Yan QW, Tan X, Gao JY, Xue C, Yu JH, Yao YG, Wei QP, Sun R, Wang Y, Liu TH, Chen T, Xiang R, Jiang N, Xue QJ, Wong CP, Maruyama S, Lin CT. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv Sci. 2021;8(7):2003734. https://doi.org/10.1002/advs.202003734.

    Article  CAS  Google Scholar 

  6. Liu ZF, Hu QM, Guo ST, Yu L, Hu XL. Thermoregulating separators based on phase-change materials for safe lithium-ion batteries. Adv Mater. 2021;33(15):2008088. https://doi.org/10.1002/adma.202008088.

    Article  CAS  Google Scholar 

  7. Zhu KP, Xue P, Cheng GJ, Wang ML, Wang H, Bao C, Zhang K, Li QL, Sun JY, Guo SH, Yao YG, Wong CP. Thermo-managing and flame-retardant scaffolds suppressing dendritic growth and polysulfide shuttling toward high-safety lithium-sulfur batteries. Energy Storage Mater. 2021;43:130. https://doi.org/10.1016/j.ensm.2021.08.031.

    Article  Google Scholar 

  8. Sun ZJ, Wong R, Yu M, Li JX, Zhang MY, Mele L, Hah J, Kathaperumal M, Wong CP. Nanocomposites for future electronics device packaging: a fundamental study of interfacial connecting mechanisms and optimal conditions of silane coupling agents for polydopamine-graphene fillers in epoxy polymers. Chem Eng J. 2022;439:135621. https://doi.org/10.1016/j.cej.2022.135621.

    Article  CAS  Google Scholar 

  9. Wang D, Ren SY, Chen JY, Li YK, Wang ZF, Xu JH, Jia X, Fu JJ. Healable, highly thermal conductive, flexible polymer composite with excellent mechanical properties and multiple functionalities. Chem Eng J. 2022;430:133163. https://doi.org/10.1016/j.cej.2021.133163.

    Article  CAS  Google Scholar 

  10. Kim TH, Choi WM, Kim DH, Meitl MA, Menard E, Jiang HQ, Carlisle JA, Rogers JA. Printable, flexible, and stretchable forms of ultrananocrystalline diamond with applications in thermal management. Adv Mater. 2008;20(11):2171. https://doi.org/10.1002/adma.200702434.

    Article  CAS  Google Scholar 

  11. Kim TI, Jung YH, Song JZ, Kim D, Li YH, Kim HS, Song IS, Wierer JJ, Pao HA, Huang YG, Rogers JA. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small. 2012;8(11):1643. https://doi.org/10.1002/smll.201200382.

    Article  CAS  Google Scholar 

  12. Due J, Robinson AJ. Reliability of thermal interface materials: a review. Appl Therm Eng. 2013;50(1):455. https://doi.org/10.1016/j.applthermaleng.2012.06.013.

    Article  CAS  Google Scholar 

  13. Moore AL, Shi L. Emerging challenges and materials for thermal management of electronics. Mater Today. 2014;17(4):163. https://doi.org/10.1016/j.mattod.2014.04.003.

    Article  CAS  Google Scholar 

  14. Razeeb KM, Dalton E, Cross GLW, Robinson AJ. Present and future thermal interface materials for electronic devices. Int Mater Rev. 2018;63:1. https://doi.org/10.1080/09506608.2017.1296605.

    Article  CAS  Google Scholar 

  15. Hansson J, Nilsson TMJ, Ye LL, Liu J. Novel nanostructured thermal interface materials: a review. Int Mater Rev. 2018;63(1):22. https://doi.org/10.1080/09506608.2017.1301014.

    Article  CAS  Google Scholar 

  16. Rahman MM, Puthirath AB, Adumbumkulath A, Tsafack T, Robatjazi H, Barnes M, Wang ZX, Kommandur S, Susarla S, Sajadi SM, Salpekar D, Yuan FS, Babu G, Nomoto K, Islam SM, Verduzco R, Yee SK, Xing HG, Ajayan PM. Fiber reinforced layered dielectric nanocomposite. Adv Funct Mater. 2019;29(28):1900056. https://doi.org/10.1002/adfm.201900056.

    Article  CAS  Google Scholar 

  17. Han ZD, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci. 2011;36(7):914. https://doi.org/10.1016/j.progpolymsci.2010.11.004.

    Article  CAS  Google Scholar 

  18. Zhu HL, Li YY, Fang ZQ, Xu JJ, Cao FY, Wan JY, Preston C, Yang B, Hu LB. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano. 2014;8(4):3606. https://doi.org/10.1021/nn500134m.

    Article  CAS  Google Scholar 

  19. Kholmanov I, Kim J, Ou E, Ruoff RS, Shi L. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano. 2015;9(12):11699. https://doi.org/10.1021/acsnano.5b02917.

    Article  CAS  Google Scholar 

  20. Someya T, Bao ZN, Malliaras GG. The rise of plastic bioelectronics. Nature. 2016;540(7633):379. https://doi.org/10.1038/nature21004.

    Article  CAS  Google Scholar 

  21. Chen XJ, Su YH, Reay D, Riffat S. Recent research developments in polymer heat exchangers - a review. Renew Sust Energ Rev. 2016;60:1367. https://doi.org/10.1016/j.rser.2016.03.024.

    Article  CAS  Google Scholar 

  22. Hussain ARJ, Alahyari AA, Eastman SA, Thibaud-Erkey C, Johnston S, Sobkowicz MJ. Review of polymers for heat exchanger applications: factors concerning thermal conductivity. Appl Therm Eng. 2017;113:1118. https://doi.org/10.1016/j.applthermaleng.2016.11.041.

    Article  CAS  Google Scholar 

  23. Xu XF, Chen J, Zhou J, Li BW. Thermal conductivity of polymers and their nanocomposites. Adv Mater. 2018;30(17):1705544. https://doi.org/10.1002/adma.201705544.

    Article  CAS  Google Scholar 

  24. Huang CL, Qian X, Yang RG. Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R Rep. 2018;132:1. https://doi.org/10.1016/j.mser.2018.06.002.

    Article  Google Scholar 

  25. Hong H, Jung YH, Lee JS, Jeong C, Kim JU, Lee S, Ryu H, Kim H, Ma Z, Kim TI. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv Funct Mater. 2019;29(37):1902575. https://doi.org/10.1002/adfm.201902575.

    Article  CAS  Google Scholar 

  26. Huang XY, Zhi CY, Lin Y, Bao H, Wu GN, Jiang PK, Mai Y. Thermal conductivity of graphene-based polymer nanocomposites. Mater Sci Eng R Rep. 2020;142:100577. https://doi.org/10.1016/j.mser.2020.100577.

    Article  Google Scholar 

  27. Zhi CY, Bando Y, Terao T, Tang CC, Kuwahara H, Golberg D. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv Funct Mater. 2009;19(12):1857. https://doi.org/10.1002/adfm.200801435.

    Article  CAS  Google Scholar 

  28. Song WL, Wang P, Cao L, Anderson A, Meziani MJ, Farr AJ, Sun YP. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Edit. 2012;51(26):6498. https://doi.org/10.1002/anie.201201689.

    Article  CAS  Google Scholar 

  29. Hong H, Kim JU, Kim TI. Effective assembly of nano-ceramic materials for high and anisotropic thermal conductivity in a polymer composite. Polymers. 2017;9(9):413. https://doi.org/10.3390/polym9090413.

    Article  CAS  Google Scholar 

  30. Chen J, Huang XY, Zhu YK, Jiang PK. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater. 2017;27(5):1604754. https://doi.org/10.1002/adfm.201604754.

    Article  CAS  Google Scholar 

  31. Kargar F, Barani Z, Salgado R, Debnath B, Lewis JS, Aytan E, Lake RK, Balandin AA. Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl Mater Inter. 2018;10(43):37555. https://doi.org/10.1021/acsami.8b16616.

    Article  CAS  Google Scholar 

  32. Drozdov AD, Christiansen JD. Thermal conductivity of highly filled polymer nanocomposites. Compos Sci Technol. 2019;182: 107717. https://doi.org/10.1016/j.compscitech.2019.107717.

    Article  CAS  Google Scholar 

  33. Lin Y, Chen J, Dong SA, Wu GN, Jiang PK, Huang XY. Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites. J Mater Sci Technol. 2021;83:219. https://doi.org/10.1016/j.jmst.2020.12.051.

    Article  CAS  Google Scholar 

  34. Huang XY, Zhi CY, Jiang PK, Golberg D, Bando Y, Tanaka T. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater. 2013;23(14):1824. https://doi.org/10.1002/adfm.201201824.

    Article  CAS  Google Scholar 

  35. Li X, Li CH, Zhang XM, Jiang YP, Xia LC, Wang JF, Song XD, Wu H, Guo SY. Simultaneously enhanced thermal conductivity and mechanical properties of PP/BN composites via constructing reinforced segregated structure with a trace amount of BN wrapped PP fiber. Chem Eng J. 2020;390:124563. https://doi.org/10.1016/j.cej.2020.124563.

    Article  CAS  Google Scholar 

  36. Kultravut K, Kuboyama K, Sedlarik V, Mrlík M, Osička J, Drőhsler P, Ougizawa T. Localization of poly(glycidyl methacrylate) grafted on reduced graphene oxide in poly(lactic acid)/poly(trimethylene terephthalate) blends for composites with enhanced electrical and thermal conductivities. ACS Appl Nano Mater. 2021;4(8):8511. https://doi.org/10.1021/acsanm.1c01843.

    Article  CAS  Google Scholar 

  37. Wang Y, Zhang Y, Zhang Z, Li T, Jiang J, Zhang XH, Liu TX, Qiao JL, Huang J, Dong WF. Pistachio-inspired bulk graphene oxide-based materials with shapeability and recyclability. ACS Nano. 2022;16(2):3394. https://doi.org/10.1021/acsnano.2c00281.

    Article  CAS  Google Scholar 

  38. Wang H, Zhang Y, Niu HT, Wu LY, He XH, Xu T, Wang NY, Yao YG. An electrospinning-electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films. Compos Part B-Eng. 2022;230:109505. https://doi.org/10.1016/j.compositesb.2021.109505.

    Article  CAS  Google Scholar 

  39. Zhuang YF, Zheng K, Cao XY, Fan QR, Ye G, Lu JX, Zhang JN, Ma YM. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology. ACS Nano. 2020;14(9):11733. https://doi.org/10.1021/acsnano.0c04456.

    Article  CAS  Google Scholar 

  40. Wu K, Wang JM, Liu DY, Lei CX, Liu D, Lei WW, Fu Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv Mater. 2020;32(8):1906939. https://doi.org/10.1002/adma.201906939.

    Article  CAS  Google Scholar 

  41. Yan QW, Dai W, Gao JY, Tan X, Lv L, Ying JF, Lu XX, Lu JB, Yao YG, Wei QP, Sun R, Yu JH, Jiang N, Chen D, Wong CP, Xiang R, Maruyama S, Lin CT. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano. 2021;15(4):6489. https://doi.org/10.1021/acsnano.0c09229.

    Article  CAS  Google Scholar 

  42. Guo HC, Zhao HY, Niu HY, Ren YJ, Fang HM, Fang XX, Lv RC, Maqbool M, Bai SL. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano. 2021;15(4):6917. https://doi.org/10.1021/acsnano.0c10768.

    Article  CAS  Google Scholar 

  43. He YF, Kuang FX, Che ZX, Sun FY, Zheng K, Zhang JN, Cao XY, Ma YM. Achieving high out-of-plane thermal conductivity for boron nitride nano sheets/epoxy composite films by magnetic orientation. Compos Part A Appl Sci Manuf. 2022;157:106933. https://doi.org/10.1016/j.compositesa.2022.106933.

    Article  CAS  Google Scholar 

  44. Dai W, Lv L, Lu JB, Hou H, Yan QW, Alam FE, Li YF, Zeng XL, Yu JH, Wei QP, Xu XF, Wu JB, Jiang N, Du SY, Sun R, Xu JB, Wong CP, Lin CT. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano. 2019;13(2):1547. https://doi.org/10.1021/acsnano.8b07337.

    Article  CAS  Google Scholar 

  45. An LL, Yang ZH, Zeng XL, Hu WB, Zhang JY, Wang QH, Yu YL. Flexible and quasi-isotropically thermoconductive polyimide films by guided assembly of boron nitride nanoplate/boron nitride flakes for microelectronic application. Chem Eng J. 2022;431:133740. https://doi.org/10.1016/j.cej.2021.133740.

    Article  CAS  Google Scholar 

  46. Mo R, Liu ZJ, Guo WY, Wu XF, Xu QJ, Min YL, Fan JC, Yu JH. Interfacial crosslinking for highly thermally conductive and mechanically strong boron nitride/aramid nanofiber composite film. Compos Commun. 2021;28:100962. https://doi.org/10.1016/j.coco.2021.100962.

    Article  Google Scholar 

  47. Chen Q, Wang ZZ. A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property. Compos Part A Appl Sci Manuf. 2022;153:106738. https://doi.org/10.1016/j.compositesa.2021.106738.

    Article  CAS  Google Scholar 

  48. Lei WW, Mochalin VN, Liu D, Qin S, Gogotsi Y, Chen Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat Commun. 2015;6:8849. https://doi.org/10.1038/ncomms9849.

    Article  CAS  Google Scholar 

  49. Xie A, Mao SW, Chen TJ, Yang H, Zhang M. Microstructure and properties of cerium oxide/polyurethane elastomer composites. Rare Met. 2021;40(12):3685. https://doi.org/10.1007/s12598-021-01714-3.

    Article  CAS  Google Scholar 

  50. Liang WL, Hu R, Liu YW, Zhang TB, Li JS. Mechanical properties and microstructure of in situ formed Ti2AlN/TiAl(WMS) composites. Rare Met. 2021;40(1):190. https://doi.org/10.1007/s12598-014-0363-7.

    Article  CAS  Google Scholar 

  51. Zeng XL, Yao YM, Gong ZY, Wang FF, Sun R, Xu JB, Wong CP. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small. 2015;11(46):6205. https://doi.org/10.1002/smll.201502173.

    Article  CAS  Google Scholar 

  52. Ma JK, Shang TY, Ren LL, Yao YM, Zhang T, Xie JQ, Zhang BT, Zeng XL, Sun R, Xu JB, Wong CP. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem Eng J. 2020;380: 122550. https://doi.org/10.1016/j.cej.2019.122550.

    Article  CAS  Google Scholar 

  53. Yao YM, Ye ZQ, Huang FY, Zeng XL, Zhang T, Shang TY, Han M, Zhang WL, Ren LL, Sun R, Xu JB, Wong CP. Achieving significant thermal conductivity enhancement via an ice-templated and sintered BN-SiC skeleton. ACS Appl Mater Interfaces. 2020;12(2):2892. https://doi.org/10.1021/acsami.9b19280.

    Article  CAS  Google Scholar 

  54. Ji C, Wang Y, Ye ZQ, Tan LY, Mao DS, Zhao WG, Zeng XL, Yan CZ, Sun R, Kang DJ, Xu JB, Wong CP. Ice-templated MXene/Ag−epoxy nanocomposites as high-performance thermal management materials. ACS Appl Mater Interfaces. 2020;12(21):24298. https://doi.org/10.1021/acsami.9b22744.

    Article  CAS  Google Scholar 

  55. Liu XY, Zhou H, Wang ZL, Han X, Zhao ZH, Guo Y, Liu WB, Wang J, Zhao T. Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity. Compos Sci Technol. 2022;220: 109289. https://doi.org/10.1016/j.compscitech.2022.109289.

    Article  CAS  Google Scholar 

  56. Kim D, You M, Seol JH, Ha S, Kim YA. Enhanced thermal conductivity of individual polymeric nanofiber incorporated with boron nitride nanotubes. J Phys Chem C. 2017;121(12):7025. https://doi.org/10.1021/acs.jpcc.7b00047.

    Article  CAS  Google Scholar 

  57. Bian WC, Yao T, Chen M, Zhang C, Shao T, Yang Y. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos Sci Technol. 2018;168:420. https://doi.org/10.1016/j.compscitech.2018.10.002.

    Article  CAS  Google Scholar 

  58. Wang HT, Ding DL, Liu Q, Chen YH, Zhang QY. Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos Part B-Eng. 2019;158:311. https://doi.org/10.1016/j.compositesb.2018.09.104.

    Article  CAS  Google Scholar 

  59. Liu MJ, Chiang SW, Chu XD, Li J, Gan L, He YB, Li BH, Kang FY, Du HD. Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing. Ceram Int. 2020;46(13):20810. https://doi.org/10.1016/j.ceramint.2020.05.096.

    Article  CAS  Google Scholar 

  60. Mcgeary RK. Mechanical packing of spherical particles. J Am Ceram Soc. 1961;44(10):513. https://doi.org/10.1111/j.1151-2916.1961.tb13716.x.

    Article  CAS  Google Scholar 

  61. Zhao CQ, Zhang PC, Zhou JJ, Qi SH, Yamauchi Y, Shi RR, Fang RC, Ishida Y, Wang ST, Tomsia AP, Jiang L, Liu MJ. Layered nanocomposites by shear-flowinduced alignment of nanosheets. Nature. 2020;580:210. https://doi.org/10.1038/s41586-020-2161-8.

    Article  CAS  Google Scholar 

  62. Du PF, Wu MY, Liu XX, Zheng Z, Wang XL, Joncheray T, Zhang YF. Diels-alder-based crosslinked self-healing polyurethane/urea from polymeric methylene diphenyl diisocyanate. J Appl Polym Sci. 2014. https://doi.org/10.1002/app.40234.

    Article  Google Scholar 

  63. Luan YB, Gao FL, Li YC, Yang JL, Hu YC, Guo ZX, Wang ZH, Zhou AJ. Healing mechanisms induced by synergy of graphene-CNTs and microwave focusing effect for the thermoplastic polyurethane composites. Compos Part A Appl Sci Manuf. 2018;106:34. https://doi.org/10.1016/j.compositesa.2017.12.009.

    Article  CAS  Google Scholar 

  64. Zhu ZZ, Li CW, Xie LY, Geng RJ, Lin CT, Li LQ, Yao YG. Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos Sci Technol. 2019;170:93. https://doi.org/10.1016/j.compscitech.2018.11.035.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51972162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Gang Yao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 620 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, HT., Zhang, Y., Xiao, G. et al. Preparation of quasi-isotropic thermal conductive composites by interconnecting spherical alumina and 2D boron nitride flakes. Rare Met. 42, 1283–1293 (2023). https://doi.org/10.1007/s12598-022-02195-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02195-8

Keywords

Navigation