Skip to main content

Advertisement

Log in

Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

MXene nanomaterials are one of the most promising electrode material candidates for supercapacitors owing to their high conductivity, abundant surface functional groups and large surface area. However, electrodes based on MXene may result in low ion-accessible surface area and blocked ion transport pathways because of the self-restacking of MXene nanosheets. It is essential to suppress the self-restacking of nanosheets and increase the electrochemical active sites in order to optimize the electrode. In this work, bidirectionally aligned MXene hybrid aerogel (A-MHA) assembled with MXene nanosheets and microgels is prepared using a facile bidirectional freeze casting and freeze-drying method. The bidirectionally aligned structure together with the three-dimensional structured microgels in the A-MHAs, can improve the ion-accessible surface area and provide more barrier-free channels by exposing more active sites and ensuring electrolyte transport freely. The A-MHA with MXene microgels content of 40 wt% exhibits a high specific capacitance of 760 F·g−1 at 1 A·g−1 and a remarkable cyclic performance of 97% after 10,000 cycles at 100 mV·s−1 in 1 mol·L−1 H2SO4 electrolyte. A-MHAs show remarkable electrochemical properties and are of potential application in energy storage.

Graphical abstract

摘要

MXene纳米材料具有高导电性、丰富的表面官能团和大的比表面积等优点, 是最有前途的超级电容器电极材料之一。但由于MXene纳米片易于自堆积, 这将导致MXene电极离子可达表面积降低, 离子传输通路受阻等。因此, 可通过抑制纳米片的自堆积, 增加电化学活性位点等优化电极结构。本研究采用双向冷冻铸造和冷冻干燥的方法, 制备了由MXene纳米片和微凝胶组成的双取向气凝胶(aligned MXene hybrid aerogel, A-MHA)。在该A-MHAs中, 双取向结构与三维微凝胶结构的结合, 可暴露更多活性位点, 保证电解质在有序通道间自由传输, 提高离子可达表面积, 与材料内部充分反应。当MXene微凝胶含量为40 wt%时, AMHA在1 A·g−1电流密度下比电容高达760 F·g−1, 在1 mol·L−1 H2SO4电解液中, 100 mV·s−1扫速下循环10000次, 循环性能高达97%。A-MHAs具有优异的电化学性能, 在储能方面具有应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shao YL, El-Kady MF, Sun JY, Li YG, Zhang QH, Zhu MF, Wang HZ, Dunn B, Kaner RB. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018;118(18):9233. https://doi.org/10.1021/acs.chemrev.8b00252.

    Article  CAS  Google Scholar 

  2. Wang FX, Wu XW, Yuan XH, Liu ZC, Zhang Y, Fu LJ, Zhu YS, Zhou QM, Wu YP, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev. 2017;46(22):6816. https://doi.org/10.1039/c7cs00205j.

    Article  CAS  Google Scholar 

  3. Li W, Liu J, Zhao DY. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater. 2016;1(6):16023. https://doi.org/10.1038/natrevmats.2016.23.

    Article  CAS  Google Scholar 

  4. Xue Q, Sun JF, Huang Y, Zhu MS, Pei ZX, Li HF, Wang YK, Li N, Zhang HY, Zhi CY. Recent progress on flexible and wearable supercapacitors. Small. 2017;13(45):1701827. https://doi.org/10.1002/smll.201701827.

    Article  CAS  Google Scholar 

  5. Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han YK, Dubal DP. True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small. 2020;16(37):2002806. https://doi.org/10.1002/smll.202002806.

    Article  CAS  Google Scholar 

  6. Qiu ZM, Bai Y, Gao YD, Liu CL, Ru Y, Pi YC, Zhang YZ, Luo YS, Pang H. MXenes nanocomposites for energy storage and conversion. Rare Met. 2021;41(4):1101. https://doi.org/10.1007/s12598-021-01876-0.

    Article  CAS  Google Scholar 

  7. Zhu Q, Xu HF, Shen K, Zhang YZ, Li B, Yang SB. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium–sulfur batteries. Rare Met. 2021;41:311. https://doi.org/10.1007/s12598-021-01839-5.

    Article  CAS  Google Scholar 

  8. Zheng SQ, Wu ZH, Wang JT, Zhang XJ. Performance of high capacity silicon/carbon anodes with different pore structures. Chin J Rare Met. 2020;44(3):225. https://doi.org/10.13373/j.cnki.cjrm.XY18040037.html.

    Article  Google Scholar 

  9. Zhao QN, Zhang YJ, Duan ZH, Wang S, Liu C, Jiang YD, Tai HL. A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Met. 2021;40(6):1459. https://doi.org/10.1007/s12598-020-01602-2.

    Article  CAS  Google Scholar 

  10. Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248. https://doi.org/10.1002/adma.201102306.

    Article  CAS  Google Scholar 

  11. Hu MM, Zhang H, Hu T, Fan BB, Wang XH, Li ZJ. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev. 2020;49(18):6666. https://doi.org/10.1039/d0cs00175a.

    Article  CAS  Google Scholar 

  12. Chaudhari NK, Jin H, Kim B, Baek DS, Joo SH, Lee K. MXene: an emerging two-dimensional material for future energy conversion and storage applications. J Mater Chem A. 2017;5(47):24564. https://doi.org/10.1039/c7ta09094c.

    Article  CAS  Google Scholar 

  13. Wei Y, Zhang P, Soomro RA, Zhu QZ, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater. 2021;33(39):2103148. https://doi.org/10.1002/adma.202103148.

    Article  CAS  Google Scholar 

  14. Zhang JZ, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA, Qin S, Han MK, Yang WR, Liu JQ, Wang XG, Gogotsi Y, Razal JM. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater. 2020;32(23):2001093. https://doi.org/10.1002/adma.202001093.

    Article  CAS  Google Scholar 

  15. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26(7):992. https://doi.org/10.1002/adma.201304138.

    Article  CAS  Google Scholar 

  16. Lukatskaya MR, Kota S, Lin ZF, Zhao MQ, Shpigel N, Levi MD, Halim J, Taberna PL, Barsoum M, Simon P, Gogotsi Y. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy. 2017;2(8):17105. https://doi.org/10.1038/nenergy.2017.105.

    Article  CAS  Google Scholar 

  17. Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater. 2016;2(12):1600255. https://doi.org/10.1002/aelm.201600255.

    Article  CAS  Google Scholar 

  18. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):16098. https://doi.org/10.1038/natrevmats.2016.98.

    Article  CAS  Google Scholar 

  19. Lukatskaya MR, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun. 2016;7:12647. https://doi.org/10.1038/ncomms12647.

    Article  Google Scholar 

  20. Ni W, Shi LY. 2D and layered Ti-based materials for supercapacitors and rechargeable batteries: synthesis, properties, and applications. Curr Appl Mater. 2022;1(1):200521193451. https://doi.org/10.2174/2666731201666210520125051.

    Article  Google Scholar 

  21. Chen Y, Xie XQ, Xin X, Tang ZR, Xu YJ. Ti3C2Tx-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano. 2019;13(1):295. https://doi.org/10.1021/acsnano.8b06136.

    Article  CAS  Google Scholar 

  22. Wang XY, Fu QS, Wen J, Ma XZ, Zhu CC, Zhang XT, Qi DP. 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors. Nanoscale. 2018;10(44):20828. https://doi.org/10.1039/c8nr06014b.

    Article  CAS  Google Scholar 

  23. Shang TX, Lin ZF, Qi CS, Liu XC, Li P, Tao Y, Wu ZT, Li DW, Simon P, Yang QH. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv Funct Mater. 2019;29(33):1903960. https://doi.org/10.1002/adfm.201903960.

    Article  CAS  Google Scholar 

  24. Wang Q, Wang SL, Guo XH, Ruan LM, Wei N, Ma Y, Li JY, Wang M, Li WQ, Zeng W. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv Electron Mater. 2019;5(12):1900537. https://doi.org/10.1002/aelm.201900537.

    Article  CAS  Google Scholar 

  25. Mao JJ, Iocozzia J, Huang JY, Meng K, Lai YK, Lin ZQ. Graphene aerogels for efficient energy storage and conversion. Energy Environ Sci. 2018;11(4):772. https://doi.org/10.1039/c7ee03031b.

    Article  CAS  Google Scholar 

  26. Zhang B, Luo C, Zhou GM, Pan ZZ, Ma JM, Nishihara H, He YB, Kang FY, Lv W, Yang QH. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium–sulfur batteries with a high sulfur loading. Adv Funct Mater. 2021;31(26):2100793. https://doi.org/10.1002/adfm.202100793.

    Article  CAS  Google Scholar 

  27. Sambyal P, Iqbal A, Hong J, Kim H, Kim MK, Hong SM, Han MK, Gogotsi Y, Koo CM. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl Mater Interfaces. 2019;11(41):38046. https://doi.org/10.1021/acsami.9b12550.

    Article  CAS  Google Scholar 

  28. Li Y, Meng FB, Mei Y, Wang HG, Guo YF, Wang Y, Peng FX, Huang F, Zhou ZW. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem Eng J. 2020;391:123512. https://doi.org/10.1016/j.cej.2019.123512.

    Article  CAS  Google Scholar 

  29. Ma YN, Yue Y, Zhang H, Cheng F, Zhao WQ, Rao JY, Luo SJ, Wang J, Jiang XL, Liu ZT, Liu NS, Gao YH. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano. 2018;12(4):3209. https://doi.org/10.1021/acsnano.7b06909.

    Article  CAS  Google Scholar 

  30. Radha N, Kanakaraj A, Manohar HM, Nidhi MR, Mondal D, Nataraj SK, Ghosh D. Binder free self-standing high performance supercapacitive electrode based on graphene/titanium carbide composite aerogel. Appl Surf Sci. 2019;481:892. https://doi.org/10.1016/j.apsusc.2019.03.086.

    Article  CAS  Google Scholar 

  31. Qin LY, Yang DZ, Zhang M, Zhao TY, Luo Z, Yu ZZ. Superelastic and ultralight electrospun carbon nanofiber/MXene hybrid aerogels with anisotropic microchannels for pressure sensing and energy storage. J Colloid Interface Sci. 2021;589:264. https://doi.org/10.1016/j.jcis.2020.12.102.

    Article  CAS  Google Scholar 

  32. Wu XY, Han BY, Zhang HB, Xie X, Tu TX, Zhang Y, Dai Y, Yang R, Yu ZZ. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem Eng J. 2020;381:122622. https://doi.org/10.1016/j.cej.2019.122622.

    Article  CAS  Google Scholar 

  33. Li YZ, Zhang XT. Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv Funct Mater. 2021;32(4):2107767. https://doi.org/10.1002/adfm.202107767.

    Article  CAS  Google Scholar 

  34. Cai CY, Wei ZC, Deng LX, Fu Y. Temperature-invariant superelastic multifunctional MXene aerogels for high-performance photoresponsive supercapacitors and wearable strain sensors. ACS Appl Mater Interfaces. 2021;13(45):54170. https://doi.org/10.1021/acsami.1c16318.

    Article  CAS  Google Scholar 

  35. Lu XC, Yang HC, Bo Z, Gong BY, Cao MY, Chen X, Wu E, Yan JH, Cen KF, Ostrikov K. Aligned Ti3C2Tx aerogel with high rate performance, power density and sub-zero-temperature stability. Energies. 2022;15(3):1191. https://doi.org/10.3390/en15031191.

    Article  CAS  Google Scholar 

  36. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature. 2014;516(7529):78. https://doi.org/10.1038/nature13970.

    Article  CAS  Google Scholar 

  37. Deng YQ, Shang TX, Wu ZT, Tao Y, Luo C, Liang JC, Han DL, Lyu RY, Qi CS, Lv W, Kang FY, Yang QH. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv Mater. 2019;31(43):1902432. https://doi.org/10.1002/adma.201902432.

    Article  CAS  Google Scholar 

  38. Yang M, Zhao NF, Cui Y, Gao WW, Zhao Q, Gao C, Bai H, Xie T. Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano. 2017;11(7):6817. https://doi.org/10.1021/acsnano.7b01815.

    Article  CAS  Google Scholar 

  39. Shahbazi MA, Ghalkhani M, Maleki H. Directional freeze-casting: a bioinspired method to assemble multifunctional aligned porous structures for advanced applications. Adv Eng Mater. 2020;22(7):2000033. https://doi.org/10.1002/adem.202000033.

    Article  CAS  Google Scholar 

  40. Liao W, Zhao HB, Liu ZG, Xu SM, Wang YZ. On controlling aerogel microstructure by freeze casting. Compos B. 2019;173:107036. https://doi.org/10.1016/j.compositesb.2019.107036.

    Article  CAS  Google Scholar 

  41. Guo FM, Shen X, Zhou JM, Liu D, Zheng QB, Yang JL, Jia BH, Lau AKT, Kim JK. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv Funct Mater. 2020;30(19):1910826. https://doi.org/10.1002/adfm.201910826.

    Article  CAS  Google Scholar 

  42. Hu T, Wang JM, Zhang H, Li ZJ, Hu MM, Wang XH. Vibrational properties of Ti3C2 and Ti3C2T2 (T=O, F, OH) monosheets by first-principles calculations: a comparative study. Phys Chem Chem Phys. 2015;17(15):9997. https://doi.org/10.1039/c4cp05666c.

    Article  CAS  Google Scholar 

  43. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater. 2017;27(30):1701264. https://doi.org/10.1002/adfm.201701264.

    Article  CAS  Google Scholar 

  44. Wang LB, Liu H, Lv XL, Cui GZ, Gu GX. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J Alloys Compd. 2020;828:154251. https://doi.org/10.1016/j.jallcom.2020.154251.

    Article  CAS  Google Scholar 

  45. Zhang TX, Wang LL, Wang ZJ, Li JJ, Wang JC. Single ice crystal growth with controlled orientation during directional freezing. J Phys Chem B. 2021;125(3):970. https://doi.org/10.1021/acs.jpcb.0c11028.

    Article  CAS  Google Scholar 

  46. Zhao NF, Yang M, Zhao Q, Gao WW, Xie T, Bai H. Superstretchable nacre-mimetic graphene/poly(vinyl alcohol) composite film based on interfacial architectural engineering. ACS Nano. 2017;11(5):4777. https://doi.org/10.1021/acsnano.7b01089.

    Article  CAS  Google Scholar 

  47. Dedovets D, Deville S. Multiphase imaging of freezing particle suspensions by confocal microscopy. J Eur Ceram Soc. 2018;38(7):2687. https://doi.org/10.1016/j.jeurceramsoc.2018.01.045.

    Article  CAS  Google Scholar 

  48. Ding M, Li S, Guo L, Jing L, Gao SP, Yang HT, Little JM, Dissanayake TU, Li KR, Yang J, Guo YX, Yang HY, Woehl TJ, Chen PY. Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors. Adv Energy Mater. 2021;11(35):2101494. https://doi.org/10.1002/aenm.202101494.

    Article  CAS  Google Scholar 

  49. Jian X, He M, Chen L, Zhang MM, Li R, Gao LJ, Fu F, Liang ZH. Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage. Electrochim Acta. 2019;318:820. https://doi.org/10.1016/j.electacta.2019.06.045.

    Article  CAS  Google Scholar 

  50. Allah AE, Wang J, Kaneti YV, Li T, Farghali AA, Khedr MH, Nanjundan AK, Ding B, Dou H, Zhang XG, Yoshio B, Yamauchi Y. Auto-programmed heteroarchitecturing: self-assembling ordered mesoporous carbon between two-dimensional Ti3C2Tx MXene layers. Nano Energy. 2019;65:103991. https://doi.org/10.1016/j.nanoen.2019.103991.

    Article  CAS  Google Scholar 

  51. Shi TZ, Feng YL, Peng T, Yuan BG. Sea urchin-shaped Fe2O3 coupled with 2D MXene nanosheets as negative electrode for high-performance asymmetric supercapacitors. Electrochim Acta. 2021;381:138245. https://doi.org/10.1016/j.electacta.2021.138245.

    Article  CAS  Google Scholar 

  52. Huang XH, Zhu XX, Luo SH, Li R, Rajput N, Chiesa M, Liao K, Chan V. MnO1.88/R-MnO2/Ti3C2(OH/F)x composite electrodes for high-performance pseudo-supercapacitors prepared from reduced MXenes. New J Chem. 2020;44(16):6583. https://doi.org/10.1039/c9nj06201g.

    Article  CAS  Google Scholar 

  53. Li T, Chang XF, Mei LF, Shu XY, Ma JD, Ouyang L, Gu SY. Solvothermal preparation of spherical Bi2O3 nanoparticles uniformly distributed on Ti3C2Tx for enhanced capacitive performance. Nanoscale Adv. 2021;3(18):5312. https://doi.org/10.1039/d1na00443c.

    Article  CAS  Google Scholar 

  54. Chang SL, Lou HQ, Meng WX, Li M, Guo FM, Pang R, Xu J, Zhang YJ, Shang YY, Cao AY. Carbon nanotube/polymer coaxial cables with strong interface for damping composites and stretchable conductors. Adv Funct Mater. 2022;32(24):2112231. https://doi.org/10.1002/adfm.202112231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52002354) and China Postdoctoral Science Foundation (No. 2020M672256). The Center of Advanced Analysis & Gene Sequencing of Zhengzhou University was thanked for SEM testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Mei Guo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7871 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, PX., Guan, GZ., Shi, X. et al. Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Met. 42, 1249–1260 (2023). https://doi.org/10.1007/s12598-022-02189-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02189-6

Keywords

Navigation