Skip to main content
Log in

Highly porous nitrogen-doped biochar nanosheets for high-performance Li–Se batteries

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

高效开发利用储量丰富和绿色环保的生物质材料,是我国实现“双碳”目标的有效技术途径,也是我国节能减排和环境保护的重要任务,符合当前环保节能和低碳经济的需求。本研究通过机械球磨和煅烧,成功地将中药麦冬生物质残渣转化为多孔、高表面、杂原子掺杂的碳纳米片。将该生物质碳纳米片用作硒正极宿主材料,合成的麦冬碳/硒复合正极表现出优异的电化学性能。在0.5C电流密度下,初始放电容量达到597.2 mAh·g−1,循环100次后可逆容量保持在346.1 mA·h·g−1,库仑效率接近100%。即使在高电流密度下(2.0C),它仍然可以表现出卓越的比容量达到309.1 mAh·g−1。如此优越的性能归因于该生物质碳纳米片具有良好的导电性、高孔容结构和丰富掺杂的氮杂原子,不仅加速了多硒化锂的氧化还原反应,还有效地抑制了多硒化锂的穿梭效应。本研究为中药材残留资源利用开辟了一条新的技术途径。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Guo YM, Zhang LJ, XiLi DG, Kang J. Advances of carbon materials as loaders for transition metal oxygen/sulfide anode materials. Chin J Rare Met. 2021;45(10):1241. https://doi.org/10.13373/j.cnki.cjrm.XY20040016.

    Article  Google Scholar 

  2. Gu XX, Lai C. One dimensional nanostructures contribute better Li–S and Li–Se batteries: progress, challenges and perspectives. Energy Storage Mater. 2019;23:190. https://doi.org/10.1016/j.ensm.2019.05.013.

    Article  Google Scholar 

  3. Gu XX, Tang TY, Liu XT, Hou YL. Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives. J Mater Chem A. 2019;7:11566. https://doi.org/10.1039/C8TA12537F.

    Article  CAS  Google Scholar 

  4. Lei YY, Liang XM, Yang L, Chen JF, Qu L, Xu K, Feng JW. Li–Se batteries: insights to the confined structure of selenium in hierarchical porous carbon and discharge mechanism in the carbonate electrolyte. Carbon. 2022;191:122. https://doi.org/10.1016/j.carbon.2022.01.053.

    Article  CAS  Google Scholar 

  5. Gu XX, Deng L, Ren XL. Metal atom-decorated carbon nanomaterials for enhancing Li-S/Se batteries performances: a mini review. Frontiers Energy Res. 2021;9: 626596. https://doi.org/10.3389/fenrg.2021.626596.

    Article  Google Scholar 

  6. Dong YF, Lu PF, Ding YJ, Shi HD, Feng XL, Wu ZS. Advanced design of cathodes and interlayers for high-performance lithium-selenium batteries. SusMat. 2021;1:393. https://doi.org/10.1002/sus2.26.

    Article  CAS  Google Scholar 

  7. Li H, Dong W, Li C, Barakat T, Sun M, Wang Y, Wu L, Wang L, Xia L, Hu ZY, Li Y, Su BL. Three-dimensional ordered hierarchically porous carbon materials for high performance Li–Se battery. J Energy Chem. 2022;68:624. https://doi.org/10.1016/j.jechem.2021.12.036.

    Article  CAS  Google Scholar 

  8. Li C, Wang Y, Li H, Liu J, Song J, Fusaro L, Hu ZY, Chen Y, Li Y, Su BL. Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li–Se battery. J Energy Chem. 2021;59:396. https://doi.org/10.1016/j.jechem.2021.12.036.

    Article  CAS  Google Scholar 

  9. Dong WD, Yu WB, Xia FJ, Chen LD, Zhang YJ, Tan HG, Wu L, Hu ZY, Mohamed HSH, Liu J, Deng Z, Li Y, Chen LH, Su BL. Melamine-based polymer networks enabled N, O, S co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li–Se batteries. J Colloid Interface Sci. 2021;582:60. https://doi.org/10.1016/j.jcis.2020.06.071.

    Article  CAS  Google Scholar 

  10. Qiu RY, Fei RX, Zhang TQ, Liu XL, Jin J, Fan HS, Wang R, He BB, Gong YS, Wang HW. Biomass-derived, 3D interconnected N-doped carbon foam as a host matrix for Li/Na/K-selenium batteries. Electrochim Acta. 2020;356: 136832. https://doi.org/10.1016/j.electacta.2020.136832.

    Article  CAS  Google Scholar 

  11. Ma CH, Wang HL, Zhao XS, Wang X, Miao YQ, Cheng L, Wang CZ, Wang L, Yue HJ, Zhang D. Porous bamboo-derived carbon as selenium host for advanced lithium/sodium-selenium batteries. Energ Technol. 2020;8:1901445. https://doi.org/10.1002/ente.201901445.

    Article  CAS  Google Scholar 

  12. Qi XQ, Yang Y, Jin Q, Yang FY, Xie Y, Sang PF, Liu K, Zhao WB, Xu XB, Fu YZ, Zhou J, Qie L, Huang YH. Two-plateau Li–Se chemistry for high volumetric capacity Se cathodes. Angew Chem Int Ed Engl. 2020;59:13908. https://doi.org/10.1002/ange.202004424.

    Article  CAS  Google Scholar 

  13. Ma ZW, Liu HQ, Lü QF. Porous biochar derived from tea saponin for supercapacitor electrode: effect of preparation technique. J Energy Storage. 2021;40: 102773. https://doi.org/10.1016/j.est.2021.102773.

    Article  Google Scholar 

  14. Yu F, Li SZ, Chen WR, Wu T, Peng C. Biomass-derived materials for electrochemical energy storage and conversion: overview and perspectives. Energy & Environ Mater. 2019;2:55. https://doi.org/10.1002/eem2.12030.

    Article  CAS  Google Scholar 

  15. Han XR, Guo XT, Xu MJ, Pang H, Ma YW. Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium–sulfur batteries. Rare Met. 2020;39(9):1099. https://doi.org/10.1007/s12598-020-01439-9.

    Article  CAS  Google Scholar 

  16. Wang D, Tian KH, Wang J, Wang ZY, Luo SH, Liu YG, Wang Q, Zhang YH, Hao AM, Yi TF. Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance. Rare Met. 2021;40(9):2464. https://doi.org/10.1007/s12598-021-01715-2.

    Article  CAS  Google Scholar 

  17. Peng HJ, Huang JQ, Zhang Q. A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Socciety Review. 2017;46:5237. https://doi.org/10.1039/C7CS00139H.

    Article  CAS  Google Scholar 

  18. Zhao CH, Luo JS, Hu ZB. Hierarchical porous N, O co-doped carbon/Se composite derived from hydrothermal treated chitosan as Li–Se battery cathode. Micro & Nano Letters. 2018;13:1386. https://doi.org/10.1049/mnl.2018.5154.

    Article  CAS  Google Scholar 

  19. Jia DD, Yang ZW, Zhang H, Liu FL, Shen Q. High performance of selenium cathode by encapsulating selenium into the micropores of chitosan-derived porous carbon framework. J Alloy Compd. 2018;746:27. https://doi.org/10.1016/j.jallcom.2018.02.276.

    Article  CAS  Google Scholar 

  20. Lu PF, Liu FY, Zhou F, Qin JQ, Shi HD, Wu ZS. Lignin derived hierarchical porous carbon with extremely suppressed polyselenide shuttling for high-capacity and long-cycle-life lithium–selenium batteries. J Energy Chem. 2021;55:476. https://doi.org/10.1016/j.jechem.2020.07.022.

    Article  CAS  Google Scholar 

  21. Xie LS, Yu SX, Yang HJ, Yang J, Ni JL, Wang JL. Hierarchical porous carbon derived from animal bone as matric to encapsulated selenium for high performance Li–Se battery. Rare Met. 2017;36(5):434. https://doi.org/10.1007/s12598-017-0910-0.

    Article  CAS  Google Scholar 

  22. Tan XD, Liu FM, Duan YN, Yang YJ. Kinetics of protein feed production from ophiopogon japonicus residues by solid state fermentation. Feed Industry. 2012;33:31.

    CAS  Google Scholar 

  23. Shen QB, Wang ZY, Yu Q, Cheng Y, Liu ZD, Zhang TP, Zhou SQ. Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues. Environ Res. 2020;183:109195. https://doi.org/10.1016/j.envres.2020.109195.

    Article  CAS  Google Scholar 

  24. Wu FM, Liu S, Li M. Research progress on the effect of the cultivation of Lycium barbarum. Northern Horticulture. 2019;17:151. https://doi.org/10.11937/bfyy.20184514.

    Article  Google Scholar 

  25. Gu XX, Tong CJ, Rehman S, Liu LM, Hou YL, Zhang SQ. Multifunctional nitrogen-doped loofah sponge carbon blocking layer for high-performance rechargeable lithium batteries. ACS Appl Mater Interfaces. 2016;8:15991. https://doi.org/10.1021/acsami.6b02378.

    Article  CAS  Google Scholar 

  26. Gu XX, Tong CJ, Lai C, Qiu JX, Huang XX, Yang WL, Wen B, Liu LM, Hou YL, Zhang SQ. Porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J Mater Chem A. 2015;3:16670. https://doi.org/10.1039/C5TA04255K.

    Article  CAS  Google Scholar 

  27. Ding H, Wei JS, Xiong HM. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale. 2014;6:13817. https://doi.org/10.1039/C4NR04267K.

    Article  CAS  Google Scholar 

  28. Xia LC, Huang H, Zeng F, Hu D, Zhang DM, Khan AS, Usman M, Pan LJ. Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: a cost-effective biomass material for binder-free supercapacitors. Mater Des. 2019;182: 108048. https://doi.org/10.1016/j.matdes.2019.108048.

    Article  CAS  Google Scholar 

  29. Song ZY, Zhu DZ, Li LC, Chen T, Duan H, Wang ZW, Lv YK, Xiong W, Liu MX, Gan LH. Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. J Mater Chem A. 2019;7:1177. https://doi.org/10.1039/C8TA10158B.

    Article  CAS  Google Scholar 

  30. Gao SY, Liu HY, Geng KR, Wei XJ. Honeysuckles-derived porous nitrogen, sulfur, dual-doped carbon as high-performance metal-free oxygen electroreduction catalyst. Nano Energy. 2015;12:785. https://doi.org/10.1039/C8TA10158B.

    Article  CAS  Google Scholar 

  31. Walle MD, Zhang ZF, Zhang MY, You XL, Li YJ, Liu YN. Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries. J Mater Sci. 2018;53:2685. https://doi.org/10.1007/s10853-017-1678-1.

    Article  CAS  Google Scholar 

  32. Gu XX, Li H, Wen HY, Zhou YJ, Kang H, Liao H, Gao MH, Wang YQ, Deng L, Yi XX, Liu XT. From agaric hydrogel to nitrogen-doped 3D porous carbon for high-performance Li–S batteries. J Mater Sci. 2019;55:1136. https://doi.org/10.1007/s10853-019-03999-3.

    Article  CAS  Google Scholar 

  33. Zhao P, Shiraz MHA, Zhu HS, Liu YH, Tao L, Liu J. Hierarchically porous carbon from waste coffee grounds for high-performance Li–Se batteries. Electrochim Acta. 2019;325: 134931. https://doi.org/10.1016/j.electacta.2019.134931.

    Article  CAS  Google Scholar 

  34. Guo DY, Zhang ZH, Xi B, Yu ZS, Zhou Z, Chen XA. Ni3S2 anchored to N/S co-doped reduced graphene oxide with highly pleated structure as a sulfur host for lithium–sulfur batteries. J Mater Chem A. 2020;8:3834. https://doi.org/10.1039/C9TA12235D.

    Article  CAS  Google Scholar 

  35. Han K, Liu Z, Shen JM, Lin YY, Dai F, Ye HQ. A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv Func Mater. 2015;25:455. https://doi.org/10.1002/adfm.201402815.

    Article  CAS  Google Scholar 

  36. Gu XX, Xin LB, Li Y, Dong F, Fu M, Hou YL. Highly reversible Li–Se batteries with ultra-lightweight N, S-codoped graphene blocking layer. Nano-Micro Lett. 2018;10(4):1. https://doi.org/10.1007/s40820-018-0213-5.

    Article  CAS  Google Scholar 

  37. Gu XX, Qiao S, Ren XL, Liu XY, He YZ, Liu XT, Liu TF. Multi-core–shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries. Rare Met. 2021;40(4):828. https://doi.org/10.1007/s12598-020-01669-x.

    Article  CAS  Google Scholar 

  38. Wu EH, Li J, Huang P, Hou J, Xu Z, Jiang Y. Synthesis and electrical properties of C/TiO2-x powders by carbothermal reduction. Chin J Rare Met. 2020;44(10):1070. https://doi.org/10.13373/j.cnki.cjrm.XY19030030.

    Article  Google Scholar 

  39. Zhang T, Wu YL, Yin YT, Chen HH, Gao C, Xia YW, Zhang XL, Wu JS, Zheng B, Li S. Rational design of Ni3(HITP)2@GO composite for lithium-sulfur cathode. Appl Surf Sci. 2022;572: 151479. https://doi.org/10.1016/j.apsusc.2021.151479.

    Article  CAS  Google Scholar 

  40. Yuan B, Hua D, Gu XX, Yu S, Xu LC, Li XY, Zheng B, Wu JS, Zhang WN, Li S, Huo FW. Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in Li–S batteries. J Energy Chem. 2020;48:128. https://doi.org/10.1016/j.jechem.2019.12.020.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51902036), the Natural Science Foundation of Chongqing Science & Technology Commission (Nos. cstc2019jcyj-msxm1407 and 2022NSCQ-MSX3091), the National Key R&D Program of the Ministry of Science and Technology of China (No. 2017YFC1700705), Sichuan Science and Technology Programs (No. 2021JDRC0043), the Scientific and Technological Research Special Project of Sichuan Provincial Administration of Traditional Chinese Medicine Science (No. 2021MS228), the Venture & Innovation Support Program for Chongqing Overseas Returnees (No. CX2021043), and the Key Disciplines of Chemical Engineering and Technology in Chongqing Colleges and Universities during the 13th Five Year Plan provided the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Xing Gu or Tie-Zhu Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1739 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, XX., Kuang, LY., Lin, J. et al. Highly porous nitrogen-doped biochar nanosheets for high-performance Li–Se batteries. Rare Met. 42, 822–829 (2023). https://doi.org/10.1007/s12598-022-02163-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02163-2

Navigation