Skip to main content
Log in

Research progress of optoelectronic devices based on two-dimensional MoS2 materials

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) is a widely used optoelectronic material with exceptional electrical, magnetic, optical, and mechanical properties. Due to the quantum confinement effect, high absorption coefficient, high surface-volume ratio, and tunable bandgap, nano-MoS2-based devices exhibit size-dependent and novel optoelectronic properties, such as excellent photoluminescence and high anisotropic electrical, mechanical, and thermal properties. This review focuses mainly on the latest progress of optoelectronic device applications based on two-dimensional (2D) nano-MoS2. Various advanced devices, such as sensors, photodetectors, light-emitting diodes (LEDs), memory applications, and field-effect transistors (FETs) are considered. The review will provide a new perspective in promoting the development of 2D nanomaterial-based photoelectric applications.

Graphical abstract

摘要

二硫化钼 (MoS2) 是一种广泛应用的光电材料,具有优异的电学、磁学、光学和机械性能。 由于量子限制效应、高吸收系数、高表面体积比和可调带隙,基于纳米 MoS2 材料的器件表现出尺寸依赖性和新颖的光电性能,例如优异的光致发光和高各向异性的电学、机械和热学性能。 本文主要综述了基于二维(2D)纳米MoS2材料光电器件领域应用的最新进展。 考察和总结了各种先进的光电器件,例如传感器、光电探测器、发光二极管 (LED)、存储器应用和场效应晶体管 (FET)。并对基于纳米 MoS2 材料光电器件的未来发展做出了展望,例如,优化MoS2纳米结构的制造及其与不同衬底的集成,以提高光电器件的响应率,是未来二维光电应用领域可能的趋势。本综述将有助于进一步拓展新型二维纳米材料光电器件领域的应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [28]. Copyright 2021, Springer US

Fig. 2

Reproduced with permission from Ref. [32]. Copyright 2021, Wiley–VCH Verlag

Fig. 3

Reproduced with permission from Ref. [42]. Copyright 2016, Wiley–VCH Verlag

Fig. 4

Reproduced with permission from Ref. [54]. Copyright 2020, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [60]. Copyright 2021, Wiley–VCH GmbH

Fig. 6

Reproduced with permission from Ref. [61]. Copyright 2020, Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [63]. Copyright 2018, American Association for the Advancement of Science

Fig. 8

Reproduced with permission from Ref. [68]. Copyright 2020, American Chemical Society

Fig. 9

Reproduced with permission from Ref. [69]. Copyright 2019, Royal Society of Chemistry

Fig. 10

Reproduced with permission from Ref. [72]. Copyright 2017, Royal Society of Chemistry

Fig. 11

Reproduced with permission from Ref. [78]. Copyright 2021, Royal Society of Chemistry

Fig. 12

Reproduced with permission from Ref. [81]. Copyright 2020, Elsevier

Fig. 13

Reproduced with permission from Ref. [84]. Copyright 2021, Wiley–VCH Verlag

Fig. 14

Reproduced with permission from Ref. [88]. Copyright 2020, American Chemical Society

Similar content being viewed by others

References

  1. Xu HW, Zhu JW, Ma QL, Ma JJ, Bai HW, Chen L, Mu SC. Two-dimensional MoS2: structural properties, synthesis methods, and regulation strategies toward oxygen reduction. Micromachines. 2021;12(3):240. https://doi.org/10.3390/mi12030240.

    Article  Google Scholar 

  2. Potoczek M, Przybylski K, Rekas M. Defect structure and electrical properties of molybdenum disulphide. J Phys Chem Solids. 2006;67(12):2528. https://doi.org/10.1016/j.jpcs.2006.07.008.

    Article  CAS  Google Scholar 

  3. Xu ZX, Lu JC, Zheng XY, Chen B, Luo YM, Tahir MN, Huang B, Xia XS, Pan XJ. A critical review on the applications and potential risks of emerging MoS2 nanomaterials. J Hazard Mater. 2020;399:123057. https://doi.org/10.1016/j.jhazmat.2020.123057.

    Article  CAS  Google Scholar 

  4. Rumyantsev SL, Jiang CL, Samnakay R, Shur MS, Balandin AA. 1/f noise characteristics of MoS2 thin-film transistors: comparison of single and multilayer structures. IEEE Electron Device Lett. 2015;36(5):517. https://doi.org/10.1109/LED.2015.2412536.

    Article  CAS  Google Scholar 

  5. Kumar R, Zheng W, Liu XH, Zhang J, Kumar M. MoS2-based nanomaterials for room-temperature gas sensors. Adv Mater Technol. 2020;5(5):1901062. https://doi.org/10.1002/admt.201901062.

    Article  CAS  Google Scholar 

  6. Barua S, Dutta HS, Gogoi S, Devi R, Khan R. Nanostructured MoS2-based advanced biosensors: a review. ACS Appl Nano Mater. 2017;1(1):2. https://doi.org/10.1021/acsanm.7b00157.

    Article  CAS  Google Scholar 

  7. Zhai YB, Yang XQ, Wang F, Li ZX, Ding GL, Qiu ZF, Wang Y, Zhou Y, Han ST. Infrared-sensitive memory based on direct-grown MoS2–upconversion-nanoparticle heterostructure. Adv Mater. 2018;30(49):1803563. https://doi.org/10.1002/adma.201803563.

    Article  CAS  Google Scholar 

  8. Zhou F, Ji W. Giant three-photon absorption in monolayer MoS2 and its application in near-infrared photodetection. Laser Photonics Rev. 2017;11(4):1700021. https://doi.org/10.1002/lpor.201700021.

    Article  CAS  Google Scholar 

  9. Taffelli A, Dirè S, Quaranta A, Pancheri L. MoS2 based photodetectors: a review. Sensors. 2021;21(8):2758. https://doi.org/10.3390/s21082758.

    Article  CAS  Google Scholar 

  10. Ponomarev E, Gutiérrez-Lezama I, Ubrig N, Morpurgo AF. Ambipolar light-emitting transistors on chemical vapor deposited monolayer MoS2. Nano Lett. 2015;15(12):8289. https://doi.org/10.1021/acs.nanolett.5b03885.

    Article  CAS  Google Scholar 

  11. Kang JH, Liu W, Banerjee K. High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl Phys Lett. 2014;104(9):093106. https://doi.org/10.1063/1.4866340.

    Article  CAS  Google Scholar 

  12. Han T, Liu HX, Wang SL, Chen SP, Yang K. The large-scale preparation and optical properties of MoS2/WS2 vertical hetero-junction. Molecules. 2020;25(8):1857. https://doi.org/10.3390/molecules25081857.

    Article  CAS  Google Scholar 

  13. Nair S, Gao J, Yao Q, Duits MH, Otto C, Mugele F. Algorithm-improved high-speed and non-invasive confocal Raman imaging of 2D materials. Natl Sci Rev. 2020;7(3):620. https://doi.org/10.1093/nsr/nwz177.

    Article  CAS  Google Scholar 

  14. Kadhim MS, Yang F, Sun B, Hou WT, Peng HX, Hou YM, Jia YF, Yuan L, Yu YM, Zhao Y. Existence of resistive switching memory and negative differential resistance state in self-colored MoS2/ZnO heterojunction devices. ACS Appl Electron Mater. 2019;1(3):318. https://doi.org/10.1021/acsaelm.8b00070.

    Article  CAS  Google Scholar 

  15. Zhang XL, Li J, Leng B, Yang L, Song YD, Feng SY, Feng LZ, Liu ZT, Fu ZW, Jiang X, Liu BD. High-performance ultraviolet-visible photodetector with high sensitivity and fast response speed based on MoS2-on-ZnO photogating heterojunction. Tungsten. 2022. https://doi.org/10.1007/s42864-022-00139-4.

    Article  Google Scholar 

  16. Peng B, Yu GN, Liu XF, Liu B, Liang X, Bi L, Deng LJ, Sum TC, Loh KP. Ultrafast charge transfer in MoS2/WSe2 p–n heterojunction. Mater. 2016;3(2):025020. https://doi.org/10.1088/2053-1583/3/2/025020.

    Article  CAS  Google Scholar 

  17. Bian RJ, Li CC, Liu Q, Cao GM, Fu QD, Meng P, Zhou JD, Liu FC, Liu Z. Recent progress in the synthesis of novel two-dimensional van der Waals materials. Natl Sci Rev. 2021. https://doi.org/10.1093/nsr/nwab164.

    Article  Google Scholar 

  18. Liu JB, Hu JY, Liu C, Tan YM, Peng X, Zhang Y. Mechanically exfoliated MoS2 nanosheets decorated with SnS2 nanoparticles for high-stability gas sensors at room temperature. Rare Met. 2021;40(6):1536. https://doi.org/10.1007/s12598-020-01565-4.

    Article  CAS  Google Scholar 

  19. Wang XW, Zheng BY, Yi JL, Liu HW, Sun XX, Zhu CG, Liu Y, Fang LZ, Li D, Pan AL. Controlled growth of SnSe/MoS2 vertical p–n heterojunction for optoelectronic applications. Nano Futures. 2021;5(1):015002. https://doi.org/10.1088/2399-1984/abd53a.

    Article  CAS  Google Scholar 

  20. An CH, Kang W, Deng QB, Hu N. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met. 2022;41(2):378. https://doi.org/10.1007/s12598-021-01791-4.

    Article  CAS  Google Scholar 

  21. Yu XP, Yang C, Song P, Peng J. Self-assembly of Au/MoS2 quantum dots core-satellite hybrid as efficient electrocatalyst for hydrogen production. Tungsten. 2020;2(2):194. https://doi.org/10.1007/s42864-020-00049-3.

    Article  Google Scholar 

  22. Zhang XL, Li J, Ma ZY, Zhang J, Leng B, Liu BD. Design and integration of a layered MoS2/GaN van der Waals heterostructure for wide spectral detection and enhanced photoresponse. ACS Appl Mater Interfaces. 2020;12(42):47721. https://doi.org/10.1021/acsami.0c11021.

    Article  CAS  Google Scholar 

  23. Nalwa HS. A review of molybdenum disulfide (MoS2) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Adv. 2020;10(51):30529. https://doi.org/10.1039/D0RA03183F.

    Article  CAS  Google Scholar 

  24. Mukhokosi EP, Manohar GVS, Nagao T, Krupanidhi SB, Nanda KK. Device architecture for visible and near-infrared photodetectors based on two-dimensional SnSe2 and MoS2: a review. Micromachines. 2020;11(8):750. https://doi.org/10.3390/mi11080750.

    Article  Google Scholar 

  25. Ramanathan AA. Defect functionalization of MoS2 nanostructures as toxic gas sensors: a review. IOP Conf Ser: Mater Sci Eng. 2018;305:012001. https://doi.org/10.1088/1757-899X/305/1/012001.

    Article  Google Scholar 

  26. Xu XL, Wang SY, Liu WW, Chen Y, Ma SY, Yun PD. An excellent triethylamine (TEA) sensor based on unique hierarchical MoS2/ZnO composites composed of porous microspheres and nanosheets. Sens Actuators B. 2021;333:129616.

    Article  CAS  Google Scholar 

  27. Sridhar S, Sebastian S, Sood AK, Asokan S. A study on MoS2 nanolayer coated etched fiber bragg grating strain sensor. IEEE Sens J. 2021;21(7):9171. https://doi.org/10.1109/JSEN.2021.3054473.

    Article  CAS  Google Scholar 

  28. Xiang JX, Wang WH, Feng LT, Feng C, Huang M, Liu P, Ren XF, Xiang B. A biaxial strain sensor using a single MoS2 grating. Nanoscale Res Lett. 2021;16(1):1. https://doi.org/10.1186/s11671-021-03493-3.

    Article  CAS  Google Scholar 

  29. Zhu J, Wang G, Jiang F, Qin YB, Cong H. Temperature sensor of MoS2 based on hybrid plasmonic waveguides. Plasmonics. 2019;14(6):1863. https://doi.org/10.1007/s11468-019-00988-9.

    Article  CAS  Google Scholar 

  30. Salih E, Ayesh AI. First principle study of transition metals codoped MoS2 as a gas sensor for the detection of NO and NO2 gases. Phys E. 2021;131:114736. https://doi.org/10.1016/j.physe.2021.114736.

    Article  CAS  Google Scholar 

  31. Ding YQ, Guo XZ, Du BS, Hu XF, Yang X, He Y, Zhou Y, Zang ZG. Low-operating temperature ammonia sensor based on Cu2O nanoparticles decorated with p-type MoS2 nanosheets. J Mater Chem C. 2021;9(14):4838. https://doi.org/10.1039/D1TC00391G.

    Article  CAS  Google Scholar 

  32. Niu Y, Zeng JW, Liu XC, Li JL, Wang Q, Li H, Rooij NFD, Wang Y, Zhou GF. A photovoltaic self-powered gas sensor based on all-dry transferred MoS2/GaSe heterojunction for ppb-level NO2 sensing at room temperature. Adv Sci. 2021;8(14):2100472. https://doi.org/10.1002/advs.202100472.

    Article  CAS  Google Scholar 

  33. Liu A, Lv SY, Jiang L, Liu FM, Zhao LJ, Wang J, Hu XL, Yang ZJ, He JM, Wang CG, Yan X, Sun P, Shimanoe K, Lu GY. The gas sensor utilizing polyaniline/MoS2 nanosheets/SnO2 nanotubes for the room temperature detection of ammonia. Sens Actuators B. 2021;332:129444. https://doi.org/10.1016/j.snb.2021.129444.

    Article  CAS  Google Scholar 

  34. Mehdizadeh A, Zeynali M, Karimi M. Engineering of MoS2 nanoribbons as high-performance materials for biosensing applications. Appl Surf Sci. 2021;540:148349. https://doi.org/10.1016/j.apsusc.2020.148349.

    Article  CAS  Google Scholar 

  35. Li NX, Tang TT, Li J, Luo L, Li CY, Shen J, Yao JQ. Highly sensitive biosensor with graphene-MoS2 heterostructure based on photonic spin Hall effect. J Magn Magn Mater. 2019;484:445. https://doi.org/10.1016/j.jmmm.2019.04.003.

    Article  CAS  Google Scholar 

  36. Yao Y, Pan HM, Luo Y, Zhu D, Chao J, Su S, Wang LH. A label-free electrochemical sensor for ultrasensitive microRNA-21 analysis based on the poly (L-cysteine)/MoS2 sensing interface. Analyst. 2021;146(5):1663. https://doi.org/10.1039/D0AN02314K.

    Article  CAS  Google Scholar 

  37. Fang X, Zeng ZR, Li QJ, Liu Y, Chu WH, Maiyalagan T, Mao S. Ultrasensitive detection of disinfection byproduct trichloroacetamide in drinking water with Ag nanoprism@MoS2 heterostructure-based electrochemical sensor. Sens Actuators B. 2021;332:129526. https://doi.org/10.1016/j.snb.2021.129526.

    Article  CAS  Google Scholar 

  38. Javadi M, Gholami M, Abdi Y. IR position-sensitive detectors based on double-junction asymmetric TiO2/MoS2/reduced graphene-oxide sandwiches. J Mater Chem C. 2018;6(31):8444. https://doi.org/10.1039/C8TC02361A.

    Article  CAS  Google Scholar 

  39. Choi JM, Jang HY, Kim AR, Kwon JD, Cho B, Park MH, Kim Y. Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale. 2021;13(2):672. https://doi.org/10.1039/D0NR07091B.

    Article  CAS  Google Scholar 

  40. Badahdah H, Kutbee A, Katowah D, Hussein MA, Al-Ahmadi N, Altuwirqi R, Al-Jawhari H. Solution processed near-infrared photodetectors using hybrid MoS2-P (Py-co-OT) composite films. Mater Res Bull. 2021;138:111229. https://doi.org/10.1016/j.materresbull.2021.111229.

    Article  CAS  Google Scholar 

  41. Xie Y, Zhang B, Wang SX, Wang D, Wang AZ, Wang ZY, Yu HH, Zhang HJ, Chen YX, Zhao MW, Huang BB, Mei LM, Wang JY. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm. Adv Mater. 2017;29(17):1605972. https://doi.org/10.1002/adma.201605972.

    Article  CAS  Google Scholar 

  42. Zhang Y, Yu YQ, Mi LF, Wang H, Zhu ZF, Wu QY, Zhang YG, Jiang Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible–near-infrared photodetectors. Small. 2016;12(8):1062. https://doi.org/10.1002/smll.201502923.

    Article  CAS  Google Scholar 

  43. Geum DM, Kim S, Khym J, Lim J, Kim S, Ahn SY, Kim TS, Kang K, Kim S. Arrayed MoS2–In0.53Ga0.47As van der Waals heterostructure for high-speed and broadband detection from visible to shortwave-infrared light. Small. 2021;17(17):2007357. https://doi.org/10.1002/smll.202007357.

    Article  CAS  Google Scholar 

  44. Zhang J, Liu YT, Zhang XL, Ma ZY, Jing L, Zhang C, Shaikenova AA, Renat B, Liu BD. High-performance ultraviolet-visible light-sensitive 2D-MoS2/1D-ZnO heterostructure photodetectors. ChemistrySelect. 2020;5(11):3438. https://doi.org/10.1002/slct.202000746.

    Article  CAS  Google Scholar 

  45. Xu H, Han XY, Dai X, Liu W, Wu J, Zhu JT, Kim D, Zou GF, Sablon KA, Sergeev A, Guo ZX, Liu HY. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv Mater. 2018;30(13):1706561. https://doi.org/10.1002/adma.201706561.

    Article  CAS  Google Scholar 

  46. Chen C, Chen XD, Wu CW, Wang X, Ping Y, Wei X, Zhou X, Lu JB, Zhu LJ, Zhou JD, Zhai TY, Han JB, Xu H. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv Mater. 2022;34(2):2107512. https://doi.org/10.1002/adma.202107512.

    Article  CAS  Google Scholar 

  47. Ping Y, Long HR, Liu H, Chen C, Zhang NN, Jing HM, Lu JB, Zhao YW, Yang ZM, Li W, Ma F, Fang XS, Wei ZM, Xu H. Polarization sensitive solar-blind ultraviolet photodetectors based on ultrawide bandgap KNb3O8 nanobelt with fringe-like atomic lattice. Adv Funct Mater. 2022. https://doi.org/10.1002/adfm.202111673.

    Article  Google Scholar 

  48. Chen Y, Wang XD, Wu GJ, Wang Z, Fang HH, Lin T, Sun S, Shen H, Hu WD, Wang JL, Sun JL, Meng XJ, Chu JH. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small. 2018;14(9):1703293. https://doi.org/10.1002/smll.201703293.

    Article  CAS  Google Scholar 

  49. Gonzalez Marin JF, Unuchek D, Watanabe K, Taniguchi T, Kis A. MoS2 photodetectors integrated with photonic circuits. NPJ 2D Mater Appl. 2019;3(1):1. https://doi.org/10.1038/s41699-019-0096-4.

    Article  CAS  Google Scholar 

  50. Wei YF, Van-Thai T, Zhao CY, Liu HF, Kong JH, Du HJ. Robust photodetectable paper from chemically exfoliated MoS2–MoO3 multilayers. ACS Appl Mater Interfaces. 2019;11(24):21445. https://doi.org/10.1021/acsami.9b01515.

    Article  CAS  Google Scholar 

  51. Wazir N, Liu RB, Ding CJ, Wang XS, Ye X, Xie LL, Lu TQ, Wei L, Zou BS. Vertically stacked MoSe2/MoO2 nanolayered photodetectors with tunable photoresponses. ACS Appl Nano Mater. 2020;3(8):7543. https://doi.org/10.1021/acsanm.0c01195.

    Article  CAS  Google Scholar 

  52. Maeso D, Castellanos-Gomez A, Agraït N, Rubio-Bollinger G. Fast yet quantum-efficient few-layer vertical MoS2 photodetectors. Adv Electron Mater. 2019;5(7):1900141. https://doi.org/10.1002/aelm.201900141.

    Article  Google Scholar 

  53. Goel N, Kumar R, Roul B, Kumar M, Krupanidhi SB. Wafer-scale synthesis of a uniform film of few-layer MoS2 on GaN for 2D heterojunction ultraviolet photodetector. J Phys D: Appl Phys. 2018;51(37):374003. https://doi.org/10.1088/1361-6463/aad4e8.

    Article  CAS  Google Scholar 

  54. Zhai XK, Xu X, Peng JB, Jing FL, Zhang QL, Liu HJ, Hu ZG. Enhanced optoelectronic performance of CVD-grown metal–semiconductor NiTe2/MoS2 heterostructures. ACS Appl Mater Interfaces. 2020;12(21):24093. https://doi.org/10.1021/acsami.0c02166.

    Article  CAS  Google Scholar 

  55. Sundararaju U, Haniff MASM, Ker PJ, Menon PS. MoS2/h-BN/graphene heterostructure and plasmonic effect for self-powering photodetector: a review. Materials. 2021;14(7):1672. https://doi.org/10.3390/ma14071672.

    Article  CAS  Google Scholar 

  56. Yao JD, Liu YL, Guo WX, Niu XY, Li MG, Wu XX, Yu Y, Yan XY, Xing BR, Zhang SC, Sha J, Wang YW. Stacking the MoS2/GeSe2 vertical van der Waals heterostructure for memory device. Appl Phys Lett. 2020;117(15):153104.

    Article  CAS  Google Scholar 

  57. Lee J, Pak S, Lee YW, Cho Y, Hong J, Giraud P, Shin HS, Morris SM, Sohn JI, Cha S, Kim JM. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat Commun. 2017;8(1):1. https://doi.org/10.1038/ncomms14734.

    Article  CAS  Google Scholar 

  58. Sun YL, Ding YT, Xie D, Sun MX, Xu JL, Yang PF, Zhang YF, Ren TL. Reconfigurable optical memory based on MoS2/QDs mixed-dimensional van der Waals heterostructure. 2D Mater. 2021;8(2):025021. https://doi.org/10.1088/2053-1583/abd90a.

    Article  CAS  Google Scholar 

  59. Khan U, Kim TH, Khan MA, Kim J, Falconi C, Kim SW. Zero-writing-power tribotronic MoS2 touch memory. Nano Energy. 2020;75:104936. https://doi.org/10.1016/j.nanoen.2020.104936.

    Article  CAS  Google Scholar 

  60. Liu C, Zou XM, Wu MC, Wang Y, Lv YW, Duan XP, Zhang S, Liu XQ, Wu WW, Hu WD, Fan ZY, Liao L. Polarization-resolved broadband MoS2/black phosphorus/MoS2 optoelectronic memory with ultralong retention time and ultrahigh switching ratio. Adv Funct Mater. 2021;31(23):2100781. https://doi.org/10.1002/adfm.202100781.

    Article  CAS  Google Scholar 

  61. Yang Y, Chen SY, Feng HM, Wang C, Wang XF, Wang S, Zhou ZC, Li B, Ma LJ, Yang HJ, Xie Y, Liu Q. High-performance optoelectronic memory based on bilayer MoS2 grown by Au catalyst. J Mater Chem C. 2020;8(8):2664. https://doi.org/10.1039/C9TC06996H.

    Article  CAS  Google Scholar 

  62. Tripathi R, Misra A. A novel approach towards molecular memory device in gate tunable structure of MoS2-graphene. Nano Res. 2021;14(1):177. https://doi.org/10.1007/s12274-020-3063-7.

    Article  CAS  Google Scholar 

  63. Wang QS, Wen Y, Cai KM, Cheng RQ, Yin L, Zhang Y, Li J, Wang ZX, Wang F, Wang FM, Shifa TA, Jiang C, Yang H, He J. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci Adv. 2018;4(4):7916. https://doi.org/10.1126/sciadv.aap7916.

    Article  CAS  Google Scholar 

  64. Shin M, Lee MJ, Yoon C, Kim S, Park BH, Lee S, Park JG. Charge-trapping memory device based on a heterostructure of MoS2 and CrPS4. J Korean Phys Soc. 2021;78(9):816. https://doi.org/10.1007/s40042-021-00154-7.

    Article  CAS  Google Scholar 

  65. Yin WX, Bai X, Zhang XY, Zhang J, Gao XP, Yu WW. Multicolor light-emitting diodes with MoS2 quantum dots. Part Part Syst Charact. 2019;36(2):1800362. https://doi.org/10.1002/ppsc.201800362.

    Article  CAS  Google Scholar 

  66. Lu GZ, Wu MJ, Lin TN, Chang CY, Lin WL, Chen YT, Hou CF, Cheng HJ, Lin TY, Shen JL, Chen YF. Electrically pumped white-light-emitting diodes based on histidine-doped MoS2 quantum dots. Small. 2019;15(30):1901908. https://doi.org/10.1002/smll.201901908.

    Article  CAS  Google Scholar 

  67. Choi JG, Le QV, Choi KS, Kwon KC, Jang HW, Gwag JS, Kim SY. Polarized light-emitting diodes based on patterned MoS2 nanosheet hole transport layer. Adv Mater. 2017;29(36):1702598. https://doi.org/10.1002/adma.201702598.

    Article  CAS  Google Scholar 

  68. Lagonegro P, Martella C, Squeo BM, Carulli F, Scavia G, Lamperti A, Galeotti F, Dubertret B, Pasini M, Brovelli S, Molle A, Giovanella U. Prolonged lifetime in nanocrystal light-emitting diodes incorporating MoS2-based conjugated polyelectrolyte interfacial layer as an alternative to PEDOT: PSS. ACS Appl Electron Mater. 2020;2(5):1186. https://doi.org/10.1021/acsaelm.0c00097.

    Article  CAS  Google Scholar 

  69. Zhang XW, Li WS, Ling ZT, Zhang Y, Xu JW, Wang H, Chen GH, Wei B. Facile synthesis of solution-processed MoS2 nanosheets and their application in high-performance ultraviolet organic light-emitting diodes. J Mater Chem C. 2019;7(4):926–36. https://doi.org/10.1039/C8TC05370G.

    Article  CAS  Google Scholar 

  70. Liu CW, Wang C, Liao CW, Golder J, Tsai MC, Young HT, Chen CT, Wu CI. Solution processable mixed-solvent exfoliated MoS2 nanosheets for efficient and robust organic light-emitting diodes. AIP Adv. 2018;8(4):045006. https://doi.org/10.1063/1.5020708.

    Article  CAS  Google Scholar 

  71. Li P, Yuan K, Lin DY, Xu XL, Wang YL, Wan Y, Yu HR, Zhang K, Ye Y, Dai L. A mixed-dimensional light-emitting diode based on a p-MoS2 nanosheet and an n-CdSe nanowire. Nanoscale. 2017;9(46):18175. https://doi.org/10.1039/C7NR05706G.

    Article  CAS  Google Scholar 

  72. Guo KP, Si CF, Han C, Pan SH, Chen G, Zheng YQ, Zhu WQ, Zhang JH, Sun C, Wei B. High-performance flexible inverted organic light-emitting diodes by exploiting MoS2 nanopillar arrays as electron-injecting and light-coupling layers. Nanoscale. 2017;9(38):14602. https://doi.org/10.1039/C7NR03920D.

    Article  CAS  Google Scholar 

  73. Pandey PK, Ulla H, Satyanarayan MN, Rawat K, Gaur A, Gawali S, Hassan PA, Bohidar HB. Fluorescent MoS2 quantum dot–DNA nanocomposite hydrogels for organic light-emitting diodes. ACS Appl Nano Mater. 2020;3(2):1289. https://doi.org/10.1021/acsanm.9b02065.

    Article  CAS  Google Scholar 

  74. Park CJ, Park HJ, Lee JY, Kim J, Lee CH, Joo J. Photovoltaic field-effect transistors using a MoS2 and organic rubrene van der Waals hybrid. ACS Appl Mater Interfaces. 2018;10(35):29848. https://doi.org/10.1021/acsami.8b11559.

    Article  CAS  Google Scholar 

  75. Islam MM, Dev D, Krishnaprasad A, Tetard L, Roy T. Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci Rep. 2020;10(1):1. https://doi.org/10.1038/s41598-020-78767-4.

    Article  CAS  Google Scholar 

  76. George A, Fistul MV, Gruenewald M, Kaiser D, Lehnert T, Mupparapu R, Neumann C, Hübner U, Schaal M, Masurkar N, Arava LMR, Staude I, Kaiser U, Fritz T, Turchanin A. Giant persistent photoconductivity in monolayer MoS2 field-effect transistors. NPJ 2D Mater Appl. 2021;5(1):1. https://doi.org/10.1038/s41699-020-00182-0.

    Article  CAS  Google Scholar 

  77. Kwon H, Garg S, Park JH, Jeong Y, Yu S, Kim SM, Kung P, Im S. Monolayer MoS2 field-effect transistors patterned by photolithography for active matrix pixels in organic light-emitting diodes. NPJ 2D Mater Appl. 2019;3(1):1. https://doi.org/10.1038/s41699-019-0091-9.

    Article  CAS  Google Scholar 

  78. Song JJ, Chu YC, Liu ZZ, Xu HH. Fabrication of solution-processed ambipolar electrolyte-gated field effect transistors from a MoS2–polymer hybrid for multifunctional optoelectronics. J Mater Chem C. 2021;9(5):1701. https://doi.org/10.1039/D0TC05250G.

    Article  CAS  Google Scholar 

  79. Wu XH, Ge RJ, Akinwande D, Lee JC. Understanding of multiple resistance states by current sweeping in MoS2-based non-volatile memory devices. Nanotechnology. 2020;31(46):465206. https://doi.org/10.1088/1361-6528/aba46a.

    Article  CAS  Google Scholar 

  80. Jiang JY, Zou XM, Lv YW, Liu Y, Xu WT, Tao QY, Chai Y, Liao L. Rational design of Al2O3/2D perovskite heterostructure dielectric for high performance MoS2 phototransistors. Nat Commun. 2020;11(1):1. https://doi.org/10.1038/s41467-020-18100-9.

    Article  CAS  Google Scholar 

  81. Shin DH, Jung DH, Kim Y, Lee C, Wang XL, Choi SH. High-speed heterojunction photodiodes made of single-or multiple-layer MoS2 directly-grown on Si quantum dots. J Alloys Compd. 2020;820:153074. https://doi.org/10.1016/j.jallcom.2019.153074.

    Article  CAS  Google Scholar 

  82. Shin GH, Park C, Lee KJ, Jin HJ, Choi SY. Ultrasensitive phototransistor based on WSe2–MoS2 van der Waals heterojunction. Nano Lett. 2020;20(8):5741. https://doi.org/10.1021/acs.nanolett.0c01460.

    Article  CAS  Google Scholar 

  83. Ying HT, Li X, Wang HM, Wang YR, Hu X, Zhang J, Zhang XF, Shi YQ, Xu MX, Zhang Q. Band structure engineering in MoS2 based heterostructures toward high-performance phototransistors. Adv Opt Mater. 2020;8(13):2000430. https://doi.org/10.1002/adom.202000430.

    Article  CAS  Google Scholar 

  84. Xie DD, Wei LB, Xie M, Jiang LY, Yang JL, He J, Jiang J. Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv Funct Mater. 2021;31(14):2010655. https://doi.org/10.1002/adfm.202010655.

    Article  CAS  Google Scholar 

  85. Noh T, Shin HS, Seo C, Kim JY, Youn J, Kim J, Lee KS, Joo J. Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots. Nano Res. 2019;12:405. https://doi.org/10.1007/s12274-018-2230-6.

    Article  CAS  Google Scholar 

  86. Liu BX, Sun YH, Wu YH, Liu K, Ye HY, Li FT, Zhang LM, Jiang Y, Wang RM. Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Res. 2021;14(4):982. https://doi.org/10.1007/s12274-020-3137-6.

    Article  CAS  Google Scholar 

  87. Zhang K, Zhai JY, Wang ZL. A monolayer MoS2 pn homogenous photodiode with enhanced photoresponse by piezo-phototronic effect. 2D Mater. 2018;5(3):035038. https://doi.org/10.1007/s12274-020-3137-6.

    Article  CAS  Google Scholar 

  88. Park H, Liu N, Kim BH, Kwon SH, Baek S, Kim S, Lee HK, Yoon YJ, Kim S. Exceptionally uniform and scalable multilayer MoS2 phototransistor array based on large-scale MoS2 grown by RF sputtering, electron beam irradiation, and sulfurization. ACS Appl Mater Interfaces. 2020;12(18):20645. https://doi.org/10.1021/acsami.0c02393.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62104090 and 11604133), the Natural Science Foundation of Shandong Province (No. ZR2017QA013), the Introduction and Cultivation Plan of Youth Innovation Talents for Universities of Shandong Province, the Science and Technology Plan of Youth Innovation Team for Universities of Shandong Province (No. 2019KJJ019), the Open Project of State Key Laboratory of Superhard Materials (Jilin University, Nos. 201503 and 201612), the Fundamental Research Funds for the Central Universities (buctrc 202122), the Research Funding of Liaocheng University (Nos. 318012016, 318051610, 318052136 and 318051612), and the Special Construction Project Fund for Shandong Province Taishan Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan-Dan Sang, Cong Wang or Qing-Lin Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, LR., Sang, DD., Yao, Y. et al. Research progress of optoelectronic devices based on two-dimensional MoS2 materials. Rare Met. 42, 17–38 (2023). https://doi.org/10.1007/s12598-022-02113-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02113-y

Keywords

Navigation