Skip to main content

Advertisement

Log in

Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Exploring efficient co-catalysts to accurately steer the charge separation of semiconductor photocatalysts is highly desired yet remains challenging. Here, we tackle the significant challenge by in situ growing the Bi12O17Cl2 photocatalyst onto two-dimensional (2D) Cl-terminated Ti3C2 MXene to construct 2D/2D heterojunction of Bi12O17Cl2 and Ti3C2. Firstly, 2D few-layered Ti3C2 MXene with chlorine groups has been successfully synthesized by Lewis acidic etching strategy with subsequent ultrasonic exfoliation. The grafting of chlorine terminations on the surface of MXene serves as nucleating centers and growth platform, resulting in the formation of strong interfacial bonds (Bi–Cl–Ti) between Bi12O17Cl2 and Ti3C2. These strong bonds can facilitate the separation and transfer of photo-generated charge carriers between Bi12O17Cl2 photocatalyst and Ti3C2 cocatalyst. As expected, the photocatalytic degradation rate of Bi12O17Cl2/Ti3C2 hybrids is 9.7 times higher than that of bare Bi12O17Cl2 nanosheets. This work not only exhibits a new design concept to effectively steer the charge separation for photocatalysis, but also gives a reference for constructing efficient MXene-based photocatalytic systems.

Graphical abstract

摘要

寻找高效的助催化剂来精准控制半导体光催化剂的光生电荷分离行为是目前提高光催化性能的一种重要方式, 但仍存在巨大的挑战。在本文中, 为了解决这一难题, 我们通过将Bi12O17Cl2半导体光催化剂原位生长到Ti3C2二维MXene表面来构建2D/2D异质结(Bi12O17Cl2/Ti3C2)。首先,我们通过Lewis酸刻蚀法和超声剥离,成功地合成了具有氯表面基团的层状Ti3C2 MXene。将MXene表面接枝的氯端作为成核中心和生长平台, 促使Bi12O17Cl2和Ti3C2之间形成强界面键(Bi‒Cl‒Ti)。这种强键能够促进Bi12O17Cl2光催化剂和Ti3C2助催化剂之间光生载流子的高效分离和转移。实验结果表明, Bi12O17Cl2/Ti3C2复合材料的光催化降解速率是纯Bi12O17Cl2纳米片的9. 7倍。这种复合方式不仅展示了一种全新的设计理念, 有效地促进了光催化反应中的光生电荷分离, 同时也为构建高效MXene基光催化反应系统提供了参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bian X, Zhang S, Zhao Y, Shi R, Zhang T. Layered double hydroxide-based photocatalytic materials toward renewable solar fuels production. InfoMat. 2021;3(7):719.

    Article  CAS  Google Scholar 

  2. Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater. 2016;28(12):2427.

    Article  CAS  Google Scholar 

  3. Zhang K, Lu Y, Zou Q, Jin J, Cho Y, Wang Y, Zhang Y, Park J. Tuning selectivity of photoelectrochemical water oxidation via facet-engineered interfacial energetics. ACS Energy Lett. 2021;6(11):4071.

    Article  CAS  Google Scholar 

  4. Li B, Wang R, Shao X, Shao L, Zhang B. Synergistically enhanced photocatalysis from plasmonics and a co-catalyst in Au@ZnO–Pd ternary core–shell nanostructures. Inorg Chem Front. 2017;4(12):2088.

    Article  CAS  Google Scholar 

  5. Im J, Sohn E, Kim S, Jang M, Son A, Zoh K, Yoon Y. Review of MXene-based nanocomposites for photocatalysis. Chemosphere. 2021;270:129478.

    Article  CAS  Google Scholar 

  6. Mao L, Cai XY, Zhu MS. Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance. Rare Met. 2021;40(7):1067.

    Article  CAS  Google Scholar 

  7. Han C, Zhang R, Ye Y, Wang L, Ma Z, Su F, Xie H, Zhou Y, Wong PK, Ye L. Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4. J Mater Chem A. 2019;7(16):9726.

    Article  CAS  Google Scholar 

  8. Li J, Pan Z, Zhou K. Enhanced photocatalytic oxygen evolution activity by formation of Ir@IrOx(OH)y core–shell heterostructure. Nanotechnology. 2018;29(40):5705.

    Article  Google Scholar 

  9. Ma B, Dang Y, Li D, Wang X, Lin K, Wang W, Zhou X, Chen Y, Xie T, Zhang X, Han H. A Yin-Yang hybrid co-catalyst (CoOxMo2N) for photocatalytic overall water splitting. Appl Catal B: Environ. 2021;298:120491.

    Article  CAS  Google Scholar 

  10. Liu M, Chen Y, Su J, Shi J, Wang X, Guo L. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat Energy. 2016;1:16151.

    Article  CAS  Google Scholar 

  11. Zuo G, Wang Y, Teo W, Xie A, Guo Y, Dai Y, Zhou W, Jana D, Xian Q, Dong W, Zhao Y. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angew Chem Int Ed. 2020;59(28):11287.

    Article  CAS  Google Scholar 

  12. Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S. Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C. 2017;5:2488.

    Article  CAS  Google Scholar 

  13. Ding MY, Han C, Yuan YJ, Xu JS, Yang XF. Advances and promises of 2D MXenes as cocatalysts for artificial photosynthesis. Solar RRL. 2021;5(12):2100603.

    Article  CAS  Google Scholar 

  14. Zhang WD, Dong XA, Liang Y, Liu R, Sun YJ, Dong F. Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway. Rare Met. 2019;38(5):437.

    Article  CAS  Google Scholar 

  15. Tang R, Xiong S, Gong D, Deng Y, Wang Y, Su L, Ding C, Yang L, Liao C. Ti3C2 2D MXene: recent progress and perspectives in photocatalysis. ACS Appl Mater Interfaces. 2020;12(51):56663.

    Article  CAS  Google Scholar 

  16. Xiao R, Zhao C, Zou Z, Chen Z, Tian L, Xu H, Tang H, Liu Q, Lin Z, Yang X. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B: Environ. 2020;268:118382.

    Article  CAS  Google Scholar 

  17. Li Y, Ding L, Guo Y, Liang Z, Cui H, Tian J. Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl Mater Interfaces. 2019;11(44):41440.

    Article  CAS  Google Scholar 

  18. Ye R, Sun S, He L, Yang S, Liu X, Li M, Fang P, Hu J. Surface engineering of hematite nanorods by 2D Ti3C2-MXene: suppressing the electron-hole recombination for enhanced photoelectrochemical performance. Appl Catal B: Environ. 2021;291:120107.

    Article  CAS  Google Scholar 

  19. Li Y, Deng X, Tian J, Liang Z, Cui H. Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl Mater Today. 2018;13:217.

    Article  Google Scholar 

  20. Fang Y, Cao Y, Tan B, Chen Q. Oxygen and titanium vacancies in a BiOBr/MXene-Ti3C2 composite for boosting photocatalytic N2 fixation. ACS Appl Mater Interfaces. 2021;13(36):42624.

    Article  CAS  Google Scholar 

  21. Tie L, Yang S, Yu C, Chen H, Liu Y, Dong S, Sun J, Sun J. In situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets for efficient photocatalytic hydrogen evolution. J Colloid Interf Sci. 2019;545:63.

    Article  CAS  Google Scholar 

  22. Cai T, Wang L, Liu Y, Zhang S, Dong W, Chen H, Yi X, Yuan J, Xia X, Liu C, Luo S. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl Catal B: Environ. 2018;239:545.

    Article  CAS  Google Scholar 

  23. Jiang Z, Chen Q, Zheng Q, Shen R, Zhang P, Li X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys Chim Sin. 2021;37:2010059.

    Google Scholar 

  24. Su T, Peng R, Hood Z, Naguib M, Ivanov I, Keum J, Qin Z, Guo Z, Wu Z. One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. Chemsuschem. 2018;11:688.

    Article  CAS  Google Scholar 

  25. Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano. 2017;11(4):3752.

    Article  CAS  Google Scholar 

  26. Li Z, Wang L, Sun D, Zhang Y, Liu B, Hu Q, Zhou A. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng: B. 2015;191:33.

    Article  CAS  Google Scholar 

  27. Mathis T, Maleski K, Goad A, Sarycheva A, Anayee M, Foucher A, Hantanasirisakul K, Shuck C, Stach E, Gogotsi Y. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano. 2021;15(4):6420.

    Article  CAS  Google Scholar 

  28. Yang H, Shi R, Shang L, Zhang T. Recent advancements of porphyrin-like single-atom catalysts: synthesis and applications. Small Struct. 2021;2(6):2100007.

    Article  CAS  Google Scholar 

  29. Wu J, Wang Y, Zhang Y, Meng H, Xu Y, Han Y, Wang Z, Dong Y, Zhang X. Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage. J Energy Chem. 2020;47:203.

    Article  Google Scholar 

  30. Alhabeb M, Maleski K, Mathis T, Sarycheva A, Hatter C, Uzun S, Levitt A, Gogotsi Y. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew Chem Int Ed. 2018;57:5444.

    Article  CAS  Google Scholar 

  31. Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P, Du S, Chai Z, Huang Z, Huang Q. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc. 2019;141(11):4730.

    Article  CAS  Google Scholar 

  32. Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, Persson P, Eklund P, Hultman L, Li M, Chen K, Zha X, Du S, Rozier P, Chai Z, Raymundo E, Taberna P, Simon P, Huang Q. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater. 2020;19:894.

    Article  CAS  Google Scholar 

  33. Shen M, Jiang W, Liang K, Zhao S, Tang R, Zhang L, Wang J. One-pot green process to synthesize MXene with controllable surface terminations using molten salts. Angew Chem Int Ed. 2021. https://doi.org/10.1002/anie.202110640.

    Article  Google Scholar 

  34. Kamysbayev V, Filatov A, Hu H, Rui X, Lagunas F, Wang D, Klie R, Talapin D. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science. 2020;369(6506):979.

    Article  CAS  Google Scholar 

  35. Peng C, Yang X, Li Y, Yu H, Wang H, Peng F. Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl Mater Interfaces. 2016;8(9):6051.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20211280) and the National Natural Science Foundation of China (No. 21975129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ye Ding.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1080 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, SS., Liu, X., Shi, YB. et al. Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance. Rare Met. 41, 2405–2416 (2022). https://doi.org/10.1007/s12598-022-02011-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02011-3

Keywords

Navigation