Skip to main content
Log in

Ultrafast photocatalytic degradation of nitenpyram by 2D ultrathin Bi2WO6: mechanism, pathways and environmental factors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As a common insecticide, nitenpyram (NTP) seriously threatens the human health and environmental safety. In this work, a visible-light-responsive photocatalyst two-dimensional (2D) Bi2WO6 was synthesized and applied to degrade NTP. Compared with bulk Bi2WO6, the 2D Bi2WO6 exhibits better photocatalytic performance for NTP degradation under visible-light irradiation. The enhanced activity can be ascribed to the unique 2D structure which would induce to higher efficiency of carrier separation. Moreover, hole (h+) plays a major role (and ·O2) in the degradation of NTP. Based on the intermediates detected by high-performance liquid chromatography–mass spectrometry (HPLC–MS), the degradation pathway of NTP was proposed. In addition, the influence of typical environmental factors (pH, water matrix, inorganic cations and common anions) on the degradation of NTP was also investigated. This work not only helps people to understand the degradation of pesticides in actual water bodies, but also provides reference for the subsequent treatment of agricultural wastewater.

Graphical abstract

摘要

烯啶虫胺(NTP)作为一种常见的杀虫剂, 严重威胁着人类健康和环境安全。 在这项工作中, 合成了一种可见光响应光催化剂 2D Bi2WO6 并应用于降解 NTP。 与块体 Bi2WO6 相比, 二维 Bi2WO6 在可见光照射下对 NTP 降解表现出更好的光催化性能。增强的活性可归因于独特的二维结构, 这将导致更高的载流子分离效率。 此外, 空穴 (h+) 对 NTP 的降解起主要作用 (和 ·O2-)。基于HPLC-MS检测的中间体, 提出了NTP的降解途径。此外, 还研究了典型环境因素 (pH, 水基质、无机阳离子和常见阴离子) 对NTP降解的影响。 本文不仅有助于人们了解农药在实际水体中的降解情况, 也为农业废水的后续处理提供参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiang XH, Zhang LS, Liu HY, Wu DS, Wu FY, Tian L, Liu LL, Zou JP, Luo SL, Chen BB. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew Chem Int Edit. 2020;59(51):23112.

    Article  CAS  Google Scholar 

  2. Zhu M, Zhang LS, Liu SS, Wang DK, Qin YC, Chen Y, Dai WL, Wang YH, Xing QJ, Zou JP. Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode. Chinese Chem Lett. 2020;31(7):1961.

    Article  CAS  Google Scholar 

  3. Zhong J, Jiang H, Wang Z, Yu Z, Wang L, Mueller JF, Guo J. Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environ Sci Ecotechnol. 2021;5:100079.

    Article  CAS  Google Scholar 

  4. Schreiner VC, Link M, Kunz S, Szocs E, Scharmuller A, Vogler B, Beck B, Battes KP, Cimpean M, Singer HP, Hollender J, Schafer RB. Paradise lost? Pesticide pollution in a European region with considerable amount of traditional agriculture. Water Res. 2021;188(1):116528.

    Article  CAS  Google Scholar 

  5. Topping CJ, Aldrich A, Berny P. Overhaul environmental risk assessment for pesticides. Science. 2020;357(6476):360.

    Article  CAS  Google Scholar 

  6. Li KY, Chen J, Ao YH, Wang PF. Preparation of a ternary g-C3N4-CdS/Bi4O5I2 composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation. Sep Purif Technol. 2021;259:118177.

    Article  CAS  Google Scholar 

  7. Han WC, Tian Y, Shen XM. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere. 2018;192:59.

    Article  CAS  Google Scholar 

  8. Dai ZL, Yang WL, Fan ZX, Guo L, Liu ZH, Dai YJ. Actinomycetes rhodococcus ruber CGMCC 17550 degrades neonicotinoid insecticide nitenpyram via a novel hydroxylation pathway and remediates nitenpyram in surface water. Chemosphere. 2021;270:128670.

    Article  CAS  Google Scholar 

  9. Hladik ML, Kolpin DW. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environ Chem. 2016;13(1):12.

    Article  CAS  Google Scholar 

  10. Yan S, Tian S, Meng Z, Teng M, Sun W, Jia M, Zhou Z, Bi S, Zhu W. Exposure to nitenpyram during pregnancy causes colonic mucosal damage and non-alcoholic steatohepatitis in mouse offspring: the role of gut microbiota. Environ Pollut. 2021;271:116306.

    Article  CAS  Google Scholar 

  11. Zhu L, Qi S, Xue X, Niu X, Wu L. Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.). Environ Pollut. 2020;258:113671.

    Article  CAS  Google Scholar 

  12. Chen XC, Zhou QZ, Liu FM, Peng QR, Teng PP. Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase. Chemosphere. 2019;233:49.

    Article  CAS  Google Scholar 

  13. Li SP, Jiang YY, Cao YH, Dong YW, Dong M, Xu J. Degradation of nitenpyram pesticide in aqueous solution by low-temperature plasma. Environ Technol. 2013;34(12):1609.

    Article  CAS  Google Scholar 

  14. Pang SM, Lin ZQ, Zhang WP, Mishra S, Bhatt P, Chen SH. Insights into the microbial degradation and biochemical mechanisms of neonicotinoids. Front Microbiol. 2020;11:868.

    Article  Google Scholar 

  15. Wang ZM, Shen ZY, Li YM, Zuo JL. Preparation and photoelectrocatalytic performance of Ru loaded TiO2 nanotubes. Chin J Rare Met. 2020;44(6):609.

    Google Scholar 

  16. Li JY, Ma AQ, Li HF, Dong YH, Gao YQ. Tunable micromorphology and photocatalytic properties of monoclinic BiVO4 prepared by bionic template method. Chin J Rare Met. 2020;44(9):912.

    Google Scholar 

  17. Chen Y, Murakami NY, Chen HY, Sun J, Zhang QT, Wang ZF, Ohno T, Zhang M. Improvement of photocatalytic activity of high specific surface area graphitic carbon nitride by loading a co-catalyst. Rare Met. 2019;38(5):468.

    Article  CAS  Google Scholar 

  18. Zhang WD, Dong XA, Liang Y, Liu R, Sun YJ. Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway. Rare Met. 2019;38(5):437.

    Article  CAS  Google Scholar 

  19. Li JN, Chen J, Ao YH, Gao X, Che HN, Wang PF. Prominent dual Z-scheme mechanism on phase junction WO3/CdS for enhanced visible-light-responsive photocatalytic performance on imidacloprid degradation. Sep Purif Technol. 2022;281:119863.

    Article  CAS  Google Scholar 

  20. Wang JF, Chen J, Wang PF, Hou J, Wang C, Ao YH. Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Appl Catal B-Environ. 2018;239:578.

    Article  CAS  Google Scholar 

  21. Huang H, Zhou C, Jiao X, Yuan H, Zhao J, He C, Hofkens J, Roeffaers MBJ, Long J, Steele JA. Subsurface defect engineering in single-unit-cell Bi2WO6 monolayers boosts solar-driven photocatalytic performance. Acs Catal. 2020;10(2):1439.

    Article  CAS  Google Scholar 

  22. Wang Y, Liu T, Li H, Liu B, Yang L. Tungsten-based photocatalysts with UV–Vis–NIR photocatalytic capacity: progress and opportunity. Tungsten. 2019;1(4):247.

    Article  Google Scholar 

  23. Wei J, Xia Y, Qayum A, Jiao X, Chen D, Wang T. Unexpected photoinduced room temperature magnetization in Bi2WO6 nanosheets. Small. 2020;16(50):2005704.

    Article  CAS  Google Scholar 

  24. Ge L, Han C, Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl Catal B-Environ. 2011;108–109:100.

    Article  CAS  Google Scholar 

  25. Huang H, Cao R, Yu S, Xu K, Hao W, Wang Y, Dong F, Zhang T, Zhang Y. Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Appl Catal B-Environ. 2017;219:526.

    Article  CAS  Google Scholar 

  26. Liang W, Pan J, Duan X, Tang H, Xu J, Tang G. Biomass carbon modified flower-like Bi2WO6 hierarchical architecture with improved photocatalytic performance. Ceram Int. 2020;46(3):3623.

    Article  CAS  Google Scholar 

  27. Zhou Y, Zhang Y, Lin M, Long J, Zhang Z, Lin H, Wu JCS, Wang X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat Commun. 2015;6:8340.

    Article  Google Scholar 

  28. Kong XY, Tong T, Ng BJ, Low J, Zeng TH, Mohamed AR, Yu JG, Chai SP. Topotactic transformation of bismuth oxybromide into bismuth tungstate: bandgap modulation of single-crystalline {001}-faceted nanosheets for enhanced photocatalytic CO2 reduction. Acs Appl Mater Inter. 2020;12(24):269919.

    Article  CAS  Google Scholar 

  29. Di J, Chen C, Zhu C, Ji M, Xia J, Yan C, Hao W, Li S, Li H, Liu Z. Bismuth vacancy mediated single unit cell Bi2WO6 nanosheets for boosting photocatalytic oxygen evolution. Appl Catal B-Environ. 2018;238:119.

    Article  CAS  Google Scholar 

  30. Zhang Y, Di J, Qian X, Ji M, Tian Z, Ye L, Zhao J, Yin S, Li H, Xia J. Oxygen vacancies in Bi2Sn2O7 quantum dots to trigger efficient photocatalytic nitrogen reduction. Appl Catal B-Environ. 2021;299:120680.

    Article  CAS  Google Scholar 

  31. Zhu FY, Lv YZ, Li JJ, Ding J, Xia XH, Wei LL, Jiang JQ, Zhang GS, Zhao QL. Enhanced visible light photocatalytic performance with metal-doped Bi2WO6 for typical fluoroquinolones degradation: efficiencies, pathways and mechanisms. Chemosphere. 2020;252:126577.

    Article  CAS  Google Scholar 

  32. Chen Y, Li JF, Liao PY, Zeng YS, Wang Z, Liu ZQ. Cascaded electron transition in CuWO4/CdS/CDs heterostructure accelerating charge separation towards enhanced photocatalytic activity. Chin Chem Lett. 2020;31(6):1516.

    Article  CAS  Google Scholar 

  33. Lu Y, Cui X, Zhao C, Yang X. Highly efficient tandem Z-scheme heterojunctions for visible light-based photocatalytic oxygen evolution reaction. Water Sci Eng. 2020;13(4):299.

    Article  Google Scholar 

  34. Yu GY, Hu FX, Cheng WW, Han ZT, Liu C, Dai Y. ZnCuAl-LDH/Bi2MoO6 nanocomposites with improved visible light-driven photocatalytic degradation. Acta Phys-Chim Sin. 2020;36(7):1911016.

    Article  CAS  Google Scholar 

  35. Wang B, Zhao J, Chen H, Weng YX, Tang H, Chen Z, Zhu W, She Y, Xia J, Li H. Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction. Appl Catal B-Environ. 2021;293:120182.

    Article  CAS  Google Scholar 

  36. Yin S, Chen Y, Li M, Hu Q, Ding Y, Shao Y, Di J, Xia J, Li H. Construction of NH2-MIL-125(Ti)/Bi2WO6 composites with accelerated charge separation for degradation of organic contaminants under visible light irradiation. Green Energy Environ. 2020;5(2):203.

    Article  Google Scholar 

  37. Jiang Y, Chen HY, Li JY, Liao JF, Zhang HH, Wang XD, Kuang DB. Z-Scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Adv Funct Mater. 2020;30(50):200493.

    Article  CAS  Google Scholar 

  38. Bian XN, Zhang S, Zhao YX, Shi R, Zhang TR. Layered double hydroxide-based photocatalytic materials toward renewable solar fuels production. InfoMat. 2021;3(7):719.

    Article  CAS  Google Scholar 

  39. Zhang H, He J, Zhai C, Zhu M. 2D Bi2WO6/MoS2 as a new photo-activated carrier for boosting electrocatalytic methanol oxidation with visible light illumination. Chinese Chem Lett. 2019;30(12):2338.

    Article  CAS  Google Scholar 

  40. Zhou S, Wang Y, Zhou K, Ba D, Ao YH, Wang PF. In-situ construction of Z-scheme g-C3N4/WO3 composite with enhanced visible-light responsive performance for nitenpyram degradation. Chinese Chem Lett. 2021;32(7):2179.

    Article  CAS  Google Scholar 

  41. Zhang L, Yang C, Lv KL, Lu YC, Li Q, Wu XF, Li YH, Li XF, Fan JJ, Li M. SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement. Chinese J Catal. 2019;40(5):755.

    Article  CAS  Google Scholar 

  42. Zhang YL, Zhao YC, Xiong Z, Gao T, Gong BG, Liu PF, Liu J, Zhang JY. Elemental mercury removal by I–doped Bi2WO6 with remarkable visible-light-driven photocatalytic oxidation. Appl Catal B-Environ. 2021;282:119534.

    Article  CAS  Google Scholar 

  43. Madriz L, Tata J, Carvajal D, Nunez O, Scharifker BR, Mostany J, Borras C, Cabrerizo FM, Vargas R. Photocatalysis and photoelectrochemical glucose oxidation on Bi2WO6: conditions for the concomitant H2 production. Renew Energy. 2020;152:974.

    Article  CAS  Google Scholar 

  44. Liu YP, Shen DY, Zhang Q, Lin Y, Peng F. Enhanced photocatalytic CO2 reduction in H2O vapor by atomically thin Bi2WO6 nanosheets with hydrophobic and nonpolar surface. Appl Catal B-Environ. 2021;283:119630.

    Article  CAS  Google Scholar 

  45. Gu Q, Zhang K, Jiang P, Shen Y, Leng Y, Zhang P, Wai PT. A dual-templating strategy for synthesis of Bi2WO6 with oxygen vacancies for enhanced light-driven photocatalytic oxidation alcohol. Mol Catal. 2021;515:111932.

  46. Qiao Z, Liu Z, Yan W, Ruan M, Guo Z, Wu X. Pyro-photo-electric catalysis in Bi2WO6 nanostructures for efficient degradation of dyes under thermal-assisted visible light irradiation. J Alloy Compd. 2022;892:162203.

  47. Karbasi M, Hashemifar SJ, Karimzadeh F, Giannakis S, Pulgarin C, Raeissi K, Sienkiewicz A. Decrypting the photocatalytic bacterial inactivation of hierarchical flower-like Bi2WO6 microspheres induced by surface properties: experimental studies and ab initio calculations. Chem Eng J. 2022;427:131768.

  48. Wang L, Wang Z, Zhang Z, Hu C. Enhanced photoactivity of Bi2WO6 by iodide insertion into the interlayer for water purification under visible light. Chem Eng J. 2018;352:664.

    Article  CAS  Google Scholar 

  49. Teh YW, Goh YW, Kong XY, Ng BJ, Yong ST, Chai SP. Fabrication of Bi2WO6/Cu/WO3 all-solid-state Z-scheme composite photocatalyst to improve CO2 photoreduction under visible light irradiation. Chem Cat Chem. 2019;11(24):6431.

    Google Scholar 

  50. Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull. 1968;3(1):37.

    Article  CAS  Google Scholar 

  51. Che HN, Gao X, Chen J, Hou J, Ao YH, Wang PF. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew Chem Int Edit. 2021;60(48):25546.

    Article  CAS  Google Scholar 

  52. Tian J, Wei L, Ren Z, Lu J, Ma J. The facile fabrication of Z-scheme Bi2WO6-P25 heterojunction with enhanced photodegradation of antibiotics under visible light. J Environ Chem Eng. 2021;9(5):106167.

    Article  CAS  Google Scholar 

  53. Xiong X, Wang Z, Zhang Y, Li Z, Shi R, Zhang T. Wettability controlled photocatalytic reactive oxygen generation and Klebsiella pneumoniae inactivation over triphase systems. Appl Catal B-Environ. 2020;264:118518.

    Article  CAS  Google Scholar 

  54. Li M, Zhong LX, Chen W, Huang Y, Chen Z, Xiao D, Zou R, Chen L, Hao Q, Liu Z, Sun R, Peng X. Regulating the electron–hole separation to promote selective oxidation of biomass using ZnS@Bi2S3 nanosheet catalyst. Appl Catal B-Environ. 2021;292:120180.

    Article  CAS  Google Scholar 

  55. Deng YC, Tang L, Zeng GM, Feng CY, Dong HR, Wang JJ, Feng HP, Liu YN, Zhou YY, Pang Y. Plasmonic resonance excited dual Z-scheme BiVO4/Ag/Cu2O nanocomposite: synthesis and mechanism for enhanced photocatalytic performance in recalcitrant antibiotic degradation. Environ Sci-Nano. 2017;4(7):1494.

    Article  CAS  Google Scholar 

  56. Ao YH, Xu LX, Wang PF, Wang C, Hou J, Qian J. Preparation of CdS nanoparticle loaded flower-like Bi2O2CO3 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Dalton T. 2015;44(25):11321.

    Article  CAS  Google Scholar 

  57. Mu RH, Ao YH, Wu TF, Wang C, Wang PF. Synthesis of novel ternary heterogeneous anatase-TiO2 (B) biphase nanowires/Bi4O5I2 composite photocatalysts for the highly efficient degradation of acetaminophen under visible light irradiation. J Hazard Mater. 2020;382:121083.

    Article  CAS  Google Scholar 

  58. Zhao Y, Wang Y, Liu E, Fan J, Hu X. Bi2WO6 nanoflowers: an efficient visible light photocatalytic activity for ceftriaxone sodium degradation. Appl Surf Sci. 2018;436:854.

    Article  CAS  Google Scholar 

  59. Xu J, Chen J, Ao Y. 0D/1D AgI/MoO3 Z-scheme heterojunction photocatalyst: highly efficient visible-light-driven photocatalyst for sulfamethoxazole degradation. Chinese Chem Lett. 2021;32(10):3226.

    Article  CAS  Google Scholar 

  60. Tang ML, Ao YH, Wang PF, Wang C. All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degradation of nitenpyram under visible light irradiation. J Hazard Mater. 2020;387:121713.

  61. Zhang WL, Li Y, Su YL, Mao K, Wang Q. Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent. J Hazard Mater. 2012;215–216:252.

    Article  CAS  Google Scholar 

  62. Zhang C, Li Y, Li MQ, Shuai DM, Zhou XY, Xiong XY, Wang C, Hu Q. Continuous photocatalysis via photo-charging and dark-discharging for sustainable environmental remediation: performance, mechanism, and influencing factors. J Hazard Mater, 2021;420:126607.

  63. Hu PD, Long MC. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal B-Environ. 2016;181:103.

    Article  CAS  Google Scholar 

  64. Lin JW, Hu YY, Wang LX, Liang DH, Ruan X, Shao SC. M88/PS/Vis system for degradation of bisphenol A: environmental factors, degradation pathways, and toxicity evaluation. Chem Eng J. 2020;382:122931.

    Article  CAS  Google Scholar 

  65. Huang Y, Nengzi LC, Zhang XY, Gou JF, Gao YJ, Zhu GX, Cheng QF, Cheng XW. Catalytic degradation of ciprofloxacin by magnetic CuS/Fe2O3/Mn2O3 nanocomposite activated peroxymonosulfate: influence factors, degradation pathways and reaction mechanism. Chem Eng J. 2020;388:124274.

  66. Ma XH, Zhao L, Dong YH. Oxidation degradation of 2,2′,5-trichlorodiphenyl in a chelating agent enhanced Fenton reaction: influencing factors, products, and pathways. Chemosphere. 2020;246:125849.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51979081), the Fundamental Research Funds for the Central Universities (No. B200202103), the National Key Plan for Research and Development of China (No. 2016YFC0502203) and the National Science Funds for Creative Research Groups of China (No. 51421006) and PAPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hui Ao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YH., Chen, J., Che, HN. et al. Ultrafast photocatalytic degradation of nitenpyram by 2D ultrathin Bi2WO6: mechanism, pathways and environmental factors. Rare Met. 41, 2439–2452 (2022). https://doi.org/10.1007/s12598-022-01984-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01984-5

Keywords

Navigation