Skip to main content
Log in

An aqueous rechargeable zinc-ion battery on basis of an organic pigment

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Neutral aqueous rechargeable zinc-ion batteries are receiving continuous attention because of their advantages of low cost, high safety, environmental friendliness, and high performance, which are difficult to attain with current organic electrolyte-based batteries. In this work, a high-performance aqueous Zn-ion battery based on the organic pigment 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) is developed. An electrochemical test shows that the PTCDA possesses a high specific discharge capacity of 136 mAh·g−1 at a current density of 10 mA·g−1. Moreover, the PTCDA cathode displays a good rate performance (77 mAh·g−1 at 1 A·g−1) and an excellent cycle life with a capacity retention of 80% after 2000 cycles. Furthermore, electrochemical analysis and structural characterization originally reveal that the PTCDA cathode undergoes a sequential Zn2+ and H3O+ insertion and extraction process, which is reversible and cycling stable.

Graphical abstract

摘要

与目前采用有机电解液的二次电池相比, 基于水系电解液的水系锌离子电池由于其具有生产成本低、安全性能高、环境友好等优点而受到了人们的广泛关注。本文报道了一种基于PTCDA有机染料作为正极材料的高性能水系锌离子电池。通过电化学测试和结构表征, 我们提出了PTCDA正极材料在充放电过程中Zn2+ 和 H3O+发生的可逆共嵌入/脱出机理。电化学测试表明, PTCDA具有良好的循环稳定性和倍率性能。在1 A·g−1下循环2000圈后, 其容量依然有80%的保持率。此外, PTCDA也具有良好的容量性能。在10 mA·g−1的电流密度下, 其放电比容量为136 mAh·g−1。这项研究成果表明, 作为水系锌离子电池正极材料的一种, PTCDA有机染料是一种非常具有开发潜力的电极材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

References

  1. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19.

    Article  CAS  Google Scholar 

  2. Li B, Xue J, Han C, Liu N, Ma K, Zhang R, Wu X, Dai L, Wang L, He Z. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J Colloid Interf Sci. 2021;599:467.

    Article  CAS  Google Scholar 

  3. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.

    Article  CAS  Google Scholar 

  4. Ji Y, Weng S, Li X, Zhang Q, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.

    Article  CAS  Google Scholar 

  5. Xie J, Gu P, Zhang Q. Nanostructured conjugated polymers: toward high-performance organic electrodes for rechargeable batteries. ACS Energy Letter. 2017;2(9):1985.

    Article  CAS  Google Scholar 

  6. Tang F, Gao J, Ruan Q, Wu X, Wu X, Zhang T, Liu Z, Xiang Y, He Z, Wu X. Graphene-wrapped MnO/C composites by MOFs-derived as cathode material for aqueous zinc ion batteries. Electrochim Acta. 2020;353:136570.

    Article  CAS  Google Scholar 

  7. Wu C, Xie K, He J, Wang Q, Ma JM, Yang S, Wang Q. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Met. 2021;40(1):48.

    Article  CAS  Google Scholar 

  8. Deng LZ, Wu F, Gao XG, Wu WP. Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Met. 2020;39(12):1457.

    Article  CAS  Google Scholar 

  9. Wang Q, Liu Y, Chen P. Phenazine-based organic cathode for aqueous zinc secondary batteries. J Power Sources. 2020;468:228401.

    Article  CAS  Google Scholar 

  10. Hu P, Zhu T, Wang X, Wei X, Yan M, Li J, Luo W, Yang W, Zhang W, Zhou L, Zhou Z, Mai L. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 2018;18(3):1758.

    Article  CAS  Google Scholar 

  11. Zhu Q, Wang Z, Wang J, Liu X, Yang D, Cheng L, Tang M, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2012;40(2):309.

    Article  CAS  Google Scholar 

  12. Chen Q, Jin J, Liao C, Liu Z, Zhou L, Wang J, Mai L. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small. 2020;16(14):2000091.

    Article  CAS  Google Scholar 

  13. Yu F, Zhang C, Wang F, Gu Y, Zhang P, Waclawik ER, Du A, Ostrikov K, Wang H. A zinc bromine “supercapattery” system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage. Mater Horiz. 2020;7(2):495.

    Article  CAS  Google Scholar 

  14. Huang T, Liu Z, Yu F, Wang F, Li D, Fu L, Chen Y, Wang H, Xie Q, Yao S, Wu Y. Boosting capacitive sodium-ion storage in electrochemically exfoliated graphite for sodium-ion capacitors. ACS Appl Mater Interfaces. 2020;12(47):52635.

    Article  CAS  Google Scholar 

  15. Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019.

    Article  CAS  Google Scholar 

  16. Guo Q, Zeng W, Liu S, Li Y, Xu JY, Wang JX, Wang Y. Recent developments on anode materials for magnesium-ion batteries: a review. Rare Met. 2021;40(2):290.

    Article  CAS  Google Scholar 

  17. Zhi J, Yazdi AZ, Valappil G, Haime J, Chen P. Artificial solid electrolyte interphase for aqueous lithium energy storage systems. Sci Adv. 2017;3(9):1701010.

    Article  CAS  Google Scholar 

  18. Yu F, Pang L, Wang X, Waclawik ER, Wang F, Ostrikov K, Wang H. Aqueous alkaline–acid hybrid electrolyte for zinc bromine battery with 3V voltage window. Energy Storage Mater. 2019;19:56.

    Article  Google Scholar 

  19. Gao J, Xie X, Liang S, Lu B, Zhou J. Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 2021;13(1):69.

    Article  CAS  Google Scholar 

  20. Yu F, Pang L, Wang HX. Preparation of mulberry-like RuO2 electrode material for supercapacitors. Rare Met. 2021;40(2):440.

    Article  CAS  Google Scholar 

  21. Yu F, Huang T, Zhang P, Tao Y, Cui FZ, Xie Q, Yao S, Wang F. Design and synthesis of electrode materials with both battery-type and capacitive charge storage. Energy Storage Mater. 2019;22:235.

    Article  Google Scholar 

  22. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1:16119.

    Article  CAS  Google Scholar 

  23. Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy. 2016;1:16039.

    Article  CAS  Google Scholar 

  24. Qi SH, Deng JW, Zhang WC, Feng YZ, Ma JM. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020;39(9):970.

    Article  CAS  Google Scholar 

  25. Liang Y, Jing Y, Gheytani S, Lee KY, Liu P, Facchetti A, Yao Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat Mater. 2017;16(8):841.

    Article  CAS  Google Scholar 

  26. Wu YL, Horwitz NE, Chen KS, Gomez-Gualdron DA, Lu NS, Ma L, Wang TC, Hersam MC, Hupp JT, Farha OK. G quadruplex organic frameworks. Nat Chem. 2017;9(5):466.

    Article  CAS  Google Scholar 

  27. Luo Z, Liu L, Zhao Q, Li F, Chen J. An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew Chem Int Ed. 2017;56(41):12561.

    Article  CAS  Google Scholar 

  28. Fan X, Wang F, Ji X, Wang R, Gao T, Hou S, Chen J, Deng T, Li X, Chen L. A universal organic cathode for ultrafast lithium and multivalent metal batteries. Angew Chem Int Ed. 2018;57(24):7146.

    Article  CAS  Google Scholar 

  29. Liu W, Luo X, Bao Y, Liu YP, Ning GH, Abdelwahab I, Li L, Nai CT, Hu ZG, Zhao D. A two-dimensional conjugated aromatic polymer via C-C coupling reaction. Nat Chem. 2017;9(6):563.

    Article  CAS  Google Scholar 

  30. Kim DJ, Hermann KR, Prokofjevs A, Otley MT, Pezzato C, Owczarek M, Stoddart JF. Redox-active macrocycles for organic rechargeable batteries. J Am Chem Soc. 2017;139(19):6635.

    Article  CAS  Google Scholar 

  31. Long R, Wang GL, Hu ZL, Sun PF, Zhang L. Gradually activated lithium uptake in sodium citrate toward high-capacity organic anode for lithium-ion batteries. Rare Met. 2021;40(6):1366.

    Article  CAS  Google Scholar 

  32. Song Z, Zhou H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci. 2013;6(8):2280.

    Article  CAS  Google Scholar 

  33. Luo Z, Liu L, Ning J, Lei K, Lu Y, Li F, Chen J. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed. 2018;57(30):9443.

    Article  CAS  Google Scholar 

  34. Kundu D, Oberholzer P, Glaros C, Bouzid A, Tervoort E, Pasquarello A, Niederberger M. Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem Mater. 2018;30(11):3874.

    Article  CAS  Google Scholar 

  35. Yu F, Pang L, Wang XX, Waclawik ER, Wang FX, Ostrikov KK, Wang HX. Aqueous alkaline-acid hybrid electrolyte for zinc-bromine battery with 3 V voltage window. Energy Storage Mater. 2019;19:56.

    Article  Google Scholar 

  36. Ma Z, Kan J. Study of cylindrical Zn/PANI secondary batteries with the electrolyte containing alkylimidazolium ionic liquid. Synth Met. 2013;174:58.

    Article  CAS  Google Scholar 

  37. Wan F, Zhang L, Wang X, Bi S, Niu Z, Chen J. An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv Funct Mater. 2018;28(45):1804975.

    Article  CAS  Google Scholar 

  38. Zhao Q, Huang W, Luo Z, Liu L, Lu Y, Li Y, Li L, Hu J, Ma H, Chen J. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci Adv. 2018;4(3):1761.

    Article  CAS  Google Scholar 

  39. Guo Z, Ma Y, Dong X, Huang J, Wang Y, Xia Y. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew Chem Int Ed. 2018;57(36):11737.

    Article  CAS  Google Scholar 

  40. Sharma P, Damien D, Nagarajan K, Shaijumon MM, Hariharan M. Perylene-polyimide-based organic electrode materials for rechargeable lithium batteries. J Phys Chem Lett. 2013;4(19):3192.

    Article  CAS  Google Scholar 

  41. Luo W, Allen M, Raju V, Ji X. An organic pigment as a high-performance cathode for sodium-ion batteries. Adv Energy Mater. 2014;4(15):1400554.

    Article  CAS  Google Scholar 

  42. Chen Y, Luo W, Carter M, Zhou L, Dai J, Fu K, Lacey S, Li T, Wan J, Han X, Bao Y, Hu L. Organic electrode for non-aqueous potassium-ion batteries. Nano Energy. 2015;18:205.

    Article  CAS  Google Scholar 

  43. Banda H, Damien D, Nagarajan K, Hariharan M, Shaijumon MM. A polyimide based all-organic sodium ion battery. J Mater Chem A. 2015;3(19):10453.

    Article  CAS  Google Scholar 

  44. Rodríguez-Pérez IA, Yuan Y, Bommier C, Wang X, Ma L, Leonard DP, Lerner MM, Carter RG, Wu T, Greaney PA, Lu J, Ji X. Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion. J Am Chem Soc. 2017;139(37):13031.

    Article  CAS  Google Scholar 

  45. Huang Y, Yuan R, Zhou S. Gas phase-based growth of highly sensitive single-crystal rectangular micro-and nanotubes. J Mater Chem. 2012;22(3):883.

    Article  CAS  Google Scholar 

  46. Cui FZ, Liu Z, Ma DL, Liu L, Huang T, Zhang P, Tan D, Wang F, Wu GY. Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chem Eng J. 2021;405:127038.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21601089), Jiangsu Specially Appointed Professor Program and the Startup Foundation for Introducing Talent of NUIST. Q. Wang also thanks Jiangsu Province Department of Education (JPDE) for scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Liu, Jing-Fa Li or Quan Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 417 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Wang, Y., Liu, Y. et al. An aqueous rechargeable zinc-ion battery on basis of an organic pigment. Rare Met. 41, 2230–2236 (2022). https://doi.org/10.1007/s12598-021-01941-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01941-8

Navigation