Skip to main content

Advertisement

Log in

Recent developments in nonferrous metals and related materials for biomedical applications in China: a review

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Biomedical materials have received increasing attention in recent decades and have been used in medical applications to advance patient care, such as prosthetic implants, tissue repair and regeneration, drug delivery systems, pharmaceutical or biological therapy products, and sensitive diagnostic technologies. Among different types of biomedical materials, nonferrous metals and related materials (NMRMs) are important and attractive candidates. The updating of biomedical NMRMs and devices heavily relies on original research and application-oriented innovation. Here, we provide recent research findings and succinct insights into the developments in NMRMs for biomedical applications in China, including the use of titanium, magnesium, copper, zinc, cobalt, zirconium, hafnium, niobium, rhenium, tantalum, tungsten, silver, gold, platinum, palladium, their alloys and compounds, rare earths, high-entropy alloys, and liquid metals. Finally, the literature review concludes with several possible directions of NMRMs for new and future developments in biomedical engineering.

Graphical abstract

摘要

生物医用材料是医学发展的物质基础, 有色金属及其他生物医用材料的科技创新推动了假体植入物、组织修复和再生、药物输送、治疗产品以及可穿戴诊断等方面不断取得新的突破, 为先进医疗技术的应用提供了重要支撑。原创性基础研究和应用创新研究是有色金属生物医用材料及医疗器械技术进步的源泉和动力。本文综述了近年来中国在有色金属生物医用材料研究领域取得的最新进展,涵盖了镁、铜、锌、钴、锆、铪、铌、铼、钽、钨、银、金、铂、钯、稀土、高熵合金和液态金属以及相关的合金、化合物、络合物在医学诊断、治疗、修复或替换病损组织与器官、增强特定功能等方面的应用。最后, 文章还展望了有色金属生物医用材料的未来发展和应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source: China Nonferrous Metal Industry Association)

Fig. 2

Reproduced with permission from Ref. [10]. Copyright 2010, The Author(s)

Fig. 3
Fig. 4

Reproduced from Ref. [36]. Copyright 2016, The Author(s)

Fig. 5

Reproduced with permission from Ref. [57]. Copyright 2016, Oxford University Press

Fig. 6

Reproduced with permission from Ref. [92]. Copyright 2020, Elsevier B.V

Fig. 7

Reproduced with permission from Ref. [121]. Copyright 2018, IEEE

Fig. 8

Reproduced with permission from Ref. [135]. Copyright 2020, The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature

Fig. 9

Reproduced from Ref. [140]. Copyright 2018, The Author(s)

Fig. 10

Reproduced with permission from Ref. [143]. Copyright 2021, American Chemical Society

Similar content being viewed by others

References

  1. Mertz W. The essential trace elements. Science. 1981;213(4514):1332.

    CAS  Google Scholar 

  2. Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK. A review on role of essential trace elements in health and disease. J Dr NTR Univ Health Sci. 2015;4(2):75.

    Google Scholar 

  3. Hudson B. Dental wealth. Archaeology. 2003;56(4):10.

    Google Scholar 

  4. Zhang X, Cui F. Biomaterials research in China. Interface Focus. 2012;2(3):255.

    Google Scholar 

  5. Needham J. Science and civilization in China vol. 5. Cambridge University Press; 1974.285.

  6. Wigley RA, Brooks RR. Noble metals and biological systems: gold and silver in medicine. USA: CRC Press Inc.; 1992. 277.

    Google Scholar 

  7. Zhao H, Ning Y. China’s ancient gold drugs. Gold Bull. 2001;34(1):24.

    CAS  Google Scholar 

  8. Mahdihassan S. Jade and gold originally as drugs in China. Am J Chin Med. 1981;9(2):108.

    CAS  Google Scholar 

  9. Lu SB, Wang JF, Zhu SX, Su L, Yang YS, Dou JL, Guo JF, Zhao ZE, Li P, Qian DF. Treatment of scoliosis with a shape-memory alloy rod. Chinese J Surg. 1986;24(3):129.

    CAS  Google Scholar 

  10. Wang Y, Zheng G, Zhang X, Zhang Y, Xiao S, Wang Z. Temporary use of shape memory spinal rod in the treatment of scoliosis. Eur Spine J. 2011;20(1):118.

    Google Scholar 

  11. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T. Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng, A. 1998;243(1–2):244.

    Google Scholar 

  12. Li Y, Yang C, Zhao H, Qu S, Li X, Li Y. New developments of Ti-based alloys for biomedical applications. Materials. 2014;7(3):1709.

    Google Scholar 

  13. Zhang L, Chen L. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater. 2019;21(4):1801215.

    Google Scholar 

  14. EvaluateMedTech®. World Preview 2018, Outlook to 2024. https://info.evaluategroup.com/rs/607-YGS-364/images/WPMT2018.pdf. Accessed 5 July 2021.

  15. Hou D, Bi X, Mao Z, Fan Y, Hu X, Li X. Biomaterials research of China from 2013 to 2017 based on bibliometrics and visualization analysis. PeerJ. 2019;7:6859.

    Google Scholar 

  16. Ministry of Science and Technology of the People’s Republic of China. The 13th Five-Year Plan on Scientific and Technological Innovation in Material Science. http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/fgzc/gfxwj/gfxwj2017/201704/t20170426_132496.html. Accessed 5 July 2021.

  17. Ministry of Science and Technology of the People’s Republic of China. The 13th Five-Year Plan on Scientific and Technological Innovation in Medical Device. http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/fgzc/gfxwj/gfxwj2017/201706/t20170614_133530.html. Accessed 5 July 2021.

  18. Mistry of Industry and Information Technology of the People’s Republic of China, National Development and Reform Conmission, Ministry of Science and Technology of the People’s Republic of China, et al. Four ministries’ circular on the publication of the development guidelines for new materials industry. https://www.miit.gov.cn/ztzl/lszt/zgzz2025/wjfb/art/2020/art_18f3756724d14c3c9fb2405e84fa8ad9.html. Accessed 5 July 2021.

  19. Kobayashi E, Doi H, Yoneyama T, Hamanaka H, Matsumoto S, Kudaka K. Evaluation of mechanical properties of dental-cast Ti-Zr based alloys. J Dental Mater. 1995;14:321.

    Google Scholar 

  20. Nomura N, Tanaka Y, Suyalatu, Kondo R, Doi H, Tsutsumi Y, Hanawa T. Effects of phase constitution of Zr-Nb alloys on their magnetic susceptibilities. Mater Trans. 2009;50:2466

  21. Kondo R, Nomura N, Suyalatu, Tsutsumi Y, Doi H, Hanawa T. Microstructure and mechanical properties of as-cast Zr-Nb alloys. Acta Biomaterialia. 2011;7:4278

  22. Kondo R, Tsutsumi Y, Doi H, Nomura N, Hanawa T. Effects of phase constitution on magnetic susceptibility and mechanical properties of Zr-rich Zr-Mo alloys. Acta Biomater. 2011;7:4259.

    Google Scholar 

  23. Song Y, Xu D, Yang R, Li D, Wu WT, Guo ZX. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Mater Sci Eng, A. 1999;260(1):269.

    Google Scholar 

  24. Hao YL, Li SJ, Sun BB, Sui ML, Yang R. Ductile titanium alloy with low Poisson's ratio. Phys Rev Lett. 2007;98:216405.

    CAS  Google Scholar 

  25. Hao YL, Li SJ, Sun SY, Zheng CY, Hu QM, Yang R. Super-elastic titanium alloy with unstable plastic deformation. Appl Phys Lett. 2005;87(9):091906.

    Google Scholar 

  26. Hao YL, Li SJ, Sun SY, Zheng CY, Yang R. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomater. 2007;3(2):277.

    CAS  Google Scholar 

  27. Li SJ, Cui TC, Li YL, Hao YL, Yang R. Ultrafine-grained β-type titanium alloy with nonlinear elasticity and high ductility. Appl Phys Lett. 2008;92(4):043128.

    Google Scholar 

  28. Cui JP, Hao YL, Li SJ, Sui ML, Li DX, Yang R. Reversible movement of homogenously nucleated dislocations in a β-titanium alloy. Phys Rev Lett. 2009;102(4):045503.

    CAS  Google Scholar 

  29. Li YY, Zou LM, Yang C, Li YH, Li LJ. Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering. Mater Sci Eng, A. 2013;560:857.

    CAS  Google Scholar 

  30. Yang Y, Li GP, Wang H, Wu SQ, Zhang LC, Li YL, Yang K. Formation of zigzag-shaped {112}< 111> β mechanical twins in Ti-24.5Nb-0.7Ta2Zr1.4O alloy. Scripta Materialia. 2012;66(5):211.

  31. Li P, Ma X, Tong T, Wang Y. Microstructural and mechanical properties of β-type Ti–Mo–Nb biomedical alloys with low elastic modulus. J Alloys Compd. 2020;815:152412.

    CAS  Google Scholar 

  32. Yuan ZS, Feng ZW, Wang JB, Miao WD, Li CJ, Liu W. The segregation of chemical composition in NiTi shape memory alloy melted by VIM in lime crucible. Mater Sci Forum. 2009;610:1315.

    Google Scholar 

  33. Zheng YF, Zhang BB, Wang BL, Wang YB, Li L, Yang QB, Cui LS. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. Acta Biomater. 2011;7(6):2758.

    CAS  Google Scholar 

  34. Wang L, Wang C, Zhang LC, Chen L, Lu W, Zhang D. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires. Sci Rep. 2016;6(1):23905.

    CAS  Google Scholar 

  35. Miao W, Xujun M, Xu G, Li H. Effect of surface preparation on corrosion properties and nickel release of a NiTi alloy. Rare Met. 2006;25(6):243.

    Google Scholar 

  36. Li HF, Qiu KJ, Zhou FY, Li L, Zheng YF. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application. Sci Rep. 2016;6:37475.

    CAS  Google Scholar 

  37. Liang CY, Jiang XJ, Ji RL, Li BE, Zou XR, Wang HS, Hao JZ, Yang T. Preparation and surface modification of 3D printed Ti-6Al-4V porous implant. Rare Met. 2021;40(5):1164.

    CAS  Google Scholar 

  38. Zhao C, Zhu X, Liang K, Ding J, Xiang Z, Fan H, Zhang X. Osteoinduction of porous titanium: a comparative study between acid-alkali and chemical-thermal treatments. J Biomed Mater Res Part B. 2010;95(2):387.

    Google Scholar 

  39. Qian L, Yu P, Zeng J, Shi Z, Wang Q, Tan G, Ning C. Large-scale functionalization of biomedical porous titanium scaffolds surface with TiO2 nanostructures. Sci China Mater. 2018;61(4):557.

    CAS  Google Scholar 

  40. Yan HM, Liu Y, Pang SJ, Zhang T. Glass formation and properties of Ti-based bulk metallic glasses as potential biomaterials with Nb additions. Rare Met. 2018;37(10):831.

    CAS  Google Scholar 

  41. Pang S, Liu Y, Li H, Sun L, Li Y, Zhang T. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications. J Alloy Compd. 2015;625:323.

    CAS  Google Scholar 

  42. Hao YL, Li SJ, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35(9):661.

    CAS  Google Scholar 

  43. Wang H, Su K, Su L, Liang P, Ji P, Wang C. The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis: a biomechanical evaluation. J Mech Behav Biomed Mater. 2018;88:488.

    CAS  Google Scholar 

  44. He X, Li Y, Bi Y, Liu X, Zhou B, Zhang S, Li S. Finite element analysis of temperature and residual stress profiles of porous cubic Ti-6Al-4V titanium alloy by electron beam melting. J Mater Sci Technol. 2020;44:191.

    Google Scholar 

  45. Zhang Y, Xu J, Ruan YC, Yu MK, O’Laughlin M, Wise H, Chen D, Tian L, Shi D, Wang J, Chen S, Feng JQ, Chow DHK, Xie X, Zheng L, Huang L, Huang S, Leung K, Lu N, Zhao L, Li H, Zhao D, Guo X, Chan K, Witte F, Chan HC, Zheng Y, Qin L. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160.

    Google Scholar 

  46. Xia J, Chen H, Yan J, Wu H, Wang H, Guo J, Zhang X, Zhang S, Zhao C, Chen Y. High-purity magnesium staples suppress inflammatory response in rectal anastomoses. ACS Appl Mater Interfaces. 2017;9(11):9506.

    CAS  Google Scholar 

  47. Wan WL, Lin YJ, Shih PC, Bow YR, Cui Q, Chang Y, Chia WT, Sung HW. In situ depot for continuous evolution of gaseous H2 mediated by a magnesium passivation/activation cycle for treating osteoarthritis. Angew Chem Int Ed. 2018;57:9875.

    CAS  Google Scholar 

  48. Ma N, Chen Y, Yang B. Magnesium metal-a potential biomaterial with antibone cancer properties. J Biomed Mater Res, Part A. 2014;102(8):2644.

    Google Scholar 

  49. Chen Y, Xiao M, Zhao H, Yang B. On the antitumor properties of biomedical magnesium metal. J Mater Chem B. 2015;3:849.

    CAS  Google Scholar 

  50. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680.

    CAS  Google Scholar 

  51. Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther. 2005;12(1):1.

    Google Scholar 

  52. Tan L, Dong J, Chen J, Yang K. Development of magnesium alloys for biomedical applications: structure, process to property relationship. Mater Technol. 2018;33(3):235.

    Google Scholar 

  53. Ding Y, Wen C, Hodgson P, Li Y. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. J Mater Chem B. 2014;2(14):1912.

    CAS  Google Scholar 

  54. Xie K, Wang L, Guo Y, Zhao S, Yang Y, Dong D, Ding W, Dai K, Gong W, Yuan G, Hao Y. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures. J Orthop Transl. 2021;27:96.

    Google Scholar 

  55. Li T, Wang XT, Tang SQ, Yang YS, Wu JH, Zhou JX. Improved wear resistance of biodegradable Mg-1.5Zn-0.6Zr alloy by Sc addition. Rare Met. 2021;40(8):2206.

    CAS  Google Scholar 

  56. Yuan G, Li Z, Niu J, Zhang X, Ding W. Method for preparing bioactive calcium phosphate coating on magnesium alloy surface for endosseous implant. China Patent, CN201110086203.3. 2011.

  57. Ding W. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. Regen Biomater. 2016;3(2):79.

    CAS  Google Scholar 

  58. Cheng P, Han P, Zhao C, Zhang S, Zhang X, Chai Y. Magnesium inference screw supports early graft incorporation with inhibition of graft degradation in anterior cruciate ligament reconstruction. Sci Rep. 2016;6:26434.

    CAS  Google Scholar 

  59. Cheng P, Han P, Zhao C, Zhang S, Wu H, Ni J, Hou P, Zhang Y, Liu J, Xu H, Liu S, Zhang X, Zheng Y, Chai Y. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials. 2016;81:14.

    CAS  Google Scholar 

  60. Wang J, Xu J, Fu W, Cheng W, Chan K, Yung PSH, Qin L. Biodegradable magnesium screws accelerate fibrous tissue mineralization at the tendon-bone insertion in anterior cruciate ligament reconstruction model of rabbit. Sci Rep. 2017;7:40369.

    CAS  Google Scholar 

  61. Wang J, Xu J, Song B, Chow DH, Yung PSH, Qin L. Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits. Acta Biomater. 2017;63:393.

    CAS  Google Scholar 

  62. Lai Y, Li Y, Cao H, Long J, Wang X, Li L, Li C, Jia Q, Teng B, Tang T, Peng J, Eglin D, Mauro A, Grijpma DW, Richards G, Qin L. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019;197:207.

    CAS  Google Scholar 

  63. Center for Medical Device Evaluation. Announcement of the State Drug Administration on the Issuance of Special Examination Procedures for Innovative Medical Devices (No. 7 of 2018). https://www.cmde.org.cn/CL0050/7586.html. 5 July 2021.

  64. Liu J, Zhang S, Zhang Y, Jiang M, Xu H, Zhao C, Zhang X. Metal vascular clamp capable of being degraded and absorbed directionally and manufacturing method. China Patent, CN201410156536.2. 2014.

  65. Center for Medical Device Evaluation. Announcement of the State Drug Administration on the Issuance of Special Examination Procedures for Innovative Medical Devices (No. 3 of 2018). https://www.cmde.org.cn/CL0050/7586.html. Accessed 5 July 2021

  66. Bai H, He X, Ding P, Liu D, Chen M. Fabrication, microstructure, and properties of a biodegradable Mg-Zn-Ca clip. J Biomed Mater Res B Appl Biomater. 2019;107(5):1741.

    CAS  Google Scholar 

  67. Mao L, Yuan G, Wang S, Niu J, Wu G, Ding W. A novel biodegradable Mg-Nd-Zn-Zr alloy with uniform corrosion behavior in artificial plasma. Mater Lett. 2012;88:1.

    CAS  Google Scholar 

  68. Yue Y, Wang L, Yang N, Huang J, Lei L, Ye H, Ren L, Yang S. Effectiveness of biodegradable magnesium alloy stents in coronary artery and femoral artery. J Interv Cardiol. 2015;28(4):358.

    Google Scholar 

  69. Dong H, Li D, Mao D, Bai N, Chen Y, Li Q. Enhanced performance of magnesium alloy for drug-eluting vascular scaffold application. Appl Surf Sci. 2018;435:320.

    CAS  Google Scholar 

  70. Zhang J, Li H, Wang W, Huang H, Pei J, Qu H, Yuan G, Li Y. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: a 20-month study. Acta Biomater. 2018;69:372.

    CAS  Google Scholar 

  71. Chen Y, Yan J, Wang Z, Yu S, Wang X, Yuan Z, Zhao C, Zheng Q. In vitro and in vivo corrosion measurements of Mg–6Zn alloys in the bile. Mater Sci Eng, C. 2014;42:116.

    Google Scholar 

  72. Zhu Y, Yang K, Cheng R, Xiang Y, Yuan T, Cheng Y, Sarmento B, Cui W. The current status of biodegradable stent to treat benign luminal disease. Mater Today. 2017;20(9):516.

    CAS  Google Scholar 

  73. Zeng RC, Li XT, Liu LJ, Li SQ, Zhang F. In vitro degradation of pure Mg for esophageal stent in artificial saliva. J Mater Sci Technol. 2016;32(5):437.

    CAS  Google Scholar 

  74. Chen WJ, Wu YY, Shen JN. Effect of copper and bronze addition on corrosion resistance of alloyed 316L stainless steel cladded on plain carbon steel by powder metallurgy. J Mater Sci Technol. 2004;20(2):217.

    Google Scholar 

  75. Chen C, Feng X, Shen Y. Microstructure and mechanical properties of Ti–Cu amorphous coating synthesized on pure Cu substrate by mechanical alloying method. Rare Met. 2020;39(10):1222.

    Google Scholar 

  76. Zhang EL, Fu S, Wang RX, Li HX, Liu Y, Ma ZQ, Liu GK, Zhu CS, Qin GW, Chen DF. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476.

    CAS  Google Scholar 

  77. Jin S, Ren L, Yang K. Bio-functional Cu containing biomaterials: a new way to enhance bio-adaption of biomaterials. J Mater Sci Technol. 2016;32(9):835.

    CAS  Google Scholar 

  78. Khatami M, Alijani HQ, Sharifi I. Biosynthesis of bimetallic and core–shell nanoparticles: their biomedical applications–a review. IET Nanobiotechnol. 2018;12(7):879.

    Google Scholar 

  79. Gao L, Zhang Y, Zhao L, Niu W, Tang Y, Gao F, Cai P, Yuan Q, Wang X, Jiang H, Gao X. An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging. Sci Adv. 2020;6(29):1421.

    Google Scholar 

  80. Wang C, Wang C, Xu L, Cheng H, Lin Q, Zhang C. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale. 2014;6:1775.

    CAS  Google Scholar 

  81. Wang J, Zhang C. CuGeO3 nanoparticles: an efficient photothermal theragnosis agent for CT imaging-guided photothermal therapy of cancers. Front Bioeng Biotechnol. 2020;8:590518.

    Google Scholar 

  82. Su Y, Cockerill I, Wang Y, Qin YX, Chang L, Zheng Y, Zhu D. Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol. 2019;37(4):428.

    CAS  Google Scholar 

  83. Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R Rep. 2014;77:1.

    Google Scholar 

  84. Yang H, Wang C, Liu C, Chen H, Wu Y, Han J, Jia Z, Lin W, Zhang D, Li W, Yuan W, Guo H, Li H, Yang G, Kong D, Zhu D, Takashima K, Ruan L, Nie J, Li X, Zheng Y. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials. 2017;145:92.

    CAS  Google Scholar 

  85. Zhou C, Li HF, Yin YX, Shi ZZ, Li T, Feng XY, Zhang JW, Song CX, Cui XS, Xu KL, Zhao YW, Hou WB, Lu ST, Liu G, Li MQ, Ma JY, Toft E, Volinsky AA, Wan M, Yao XJ, Wang CB, Yao K, Xu SK, Lu H, Chang SF, Ge JB, Wang LN, Zhang HJ. Long-term in vivo study of biodegradable Zn-Cu stent: a 2-year implantation evaluation in porcine coronary artery. Acta Biomater. 2019;97:657.

    CAS  Google Scholar 

  86. Tang Z, Huang H, Niu J, Zhang L, Zhang H, Pei J, Tan J, Yuan G. Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants. Mater Des. 2017;117:84.

    CAS  Google Scholar 

  87. Yin YX, Zhou C, Shi YP, Shi ZZ, Lu TH, Hao Y, Liu CH, Wang X, Zhang HJ, Wang LN. Hemocompatibility of biodegradable Zn-0.8 wt%(Cu, Mn, Li) alloys. Mater Sci Eng C. 2019;104:109896.

    CAS  Google Scholar 

  88. Tang Z, Niu J, Huang H, Zhang H, Pei J, Ou J, Yuan G. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications. J Mech Behav Biomed Mater. 2017;72:182.

    CAS  Google Scholar 

  89. Xiao C, Wang L, Ren Y, Sun S, Zhang E, Yan C, Liu Q, Sun X, Shou F, Duan J, Wang H, Qin G. Indirectly extruded biodegradable Zn-0.05 wt% Mg alloy with improved strength and ductility: in vitro and in vivo studies. J Mater Sci Technol. 2018;34(9):1618.

    CAS  Google Scholar 

  90. Li HF, Xie XH, Zheng YF, Cong Y, Zhou FY, Qiu KJ, Wang X, Chen SH, Huang L, Tian L, Qin L. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg Ca and Sr. Sci Rep. 2015;5:10719.

    CAS  Google Scholar 

  91. Su Y, Yang H, Gao J, Qin YX, Zheng Y, Zhu D. Interfacial zinc phosphate is the key to controlling biocompatibility of metallic zinc implants. Adv Sci. 2019;6(14):1900112.

    Google Scholar 

  92. Yue R, Niu J, Li Y, Ke G, Huang H, Pei J, Ding W, Yuan G. In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications. Mater Sci Eng C. 2020;113:111007.

    CAS  Google Scholar 

  93. Yan Y, Yang H, Su Y, Qiao L. Albumin adsorption on CoCrMo alloy surfaces. Sci Rep. 2015;5:18403.

    CAS  Google Scholar 

  94. Wang Z, Yan Y, Xing L, Su Y, Qiao L. The role of hard phase carbides in tribocorrosion processes for a Co-based biomedical alloy. Tribol Int. 2017;113:370.

    CAS  Google Scholar 

  95. Zhou Z, Wei Q, Li Q, Jiang B, Chen Y, Sun Y. Development of Co-based bulk metallic glasses as potential biomaterials. Mater Sci Eng, C. 2016;69:46.

    CAS  Google Scholar 

  96. Xu W, Zhang B, Yang L, Ni Q, Li Y, Yu F. Effect of the coexistence of albumin and H2O2 on the corrosion of biomedical cobalt alloys in physiological saline. RSC Adv. 2019;9(57):32954.

    CAS  Google Scholar 

  97. Liu L, Huang R, Zhang L. Cobalt element doping for biomedical use: a review. Mater Sci Forum. 2020;993:811.

    Google Scholar 

  98. Zhang H, Wang J, Zeng Y, Wang G, Han S, Yang Z, Li B, Wang X, Gao J, Zheng L, Liu X, Huo Z, Yu R. Leucine-coated cobalt ferrite nanoparticles: synthesis, characterization and potential biomedical applications for drug delivery. Phys Lett A. 2020;384:126600.

    CAS  Google Scholar 

  99. Zhou JH, Zhao LZ. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities. Sci Rep. 2016;6:29069.

    CAS  Google Scholar 

  100. Zhou JH, Zhao LZ. Hypoxia-mimicking Co doped TiO2 microporous coating on titanium with enhanced angiogenic and osteogenic activities. Acta Biomater. 2016;43:358.

    CAS  Google Scholar 

  101. Zheng YF, Yang YY, Deng Y. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. Mater Sci Eng, C. 2019;99:770.

    CAS  Google Scholar 

  102. Deng Z, Lin B, Jiang Z, Huang W, Li J, Zeng X, Wang H, Wang D, Zhang Y. Hypoxia-mimicking cobalt-doped borosilicate bioactive glass scaffolds with enhanced angiogenic and osteogenic capacity for bone regeneration. Int J Biol Sci. 2019;15(6):1113.

    CAS  Google Scholar 

  103. Zhu H, Deng J, Yang Y, Li Y, Shi J, Zhao J, Deng Y, Chen X, Yang W. Cobalt nanowire-based multifunctional platform for targeted chemophotothermal synergistic cancer therapy. Colloids Surf, B. 2019;180:401.

    CAS  Google Scholar 

  104. Zhou FY, Wang BL, Qiu KJ, Lin WJ, Li L, Wang YB, Nie FL, Zheng YF. Microstructure, corrosion behavior and cytotoxicity of Zr–Nb alloys for biomedical application. Mater Sci Eng, C. 2012;32(4):851.

    CAS  Google Scholar 

  105. Zhou FY, Wang BL, Qiu KJ, Li L, Lin JP, Li HF, Zheng YF. Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr–Mo alloys. J Biomed Mater Res B Appl Biomater. 2013;101(2):237.

    CAS  Google Scholar 

  106. Guo S, Zhang J, Shang Y, Zhang J, Meng Q, Cheng X, Zhao X. A novel metastable β-type Zr-12Nb-4Sn alloy with low Young’s modulus and low magnetic susceptibility. J Alloy Compd. 2018;745:234.

    CAS  Google Scholar 

  107. Guo S, Shang Y, Zhang J, Zhang J, Meng Q, Cheng X, Zhao X. A metastable β-type Zr-4Mo-4Sn alloy with low cost, low Young’s modulus and low magnetic susceptibility for biomedical applications. J Alloy Compd. 2018;754:232.

    CAS  Google Scholar 

  108. Hua N, Chen W, Zhang L, Li G, Liao Z, Lin Y. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications. Mater Sci Eng, C. 2017;76:1154.

    CAS  Google Scholar 

  109. Shi H, Zhao W, Wei X, Ding Y, Shen X, Liu W. Effect of Ti addition on mechanical properties and corrosion resistance of Ni-free Zr-based bulk metallic glasses for potential biomedical applications. J Alloys Compd. 2020;815:152636.

    CAS  Google Scholar 

  110. Chen Q, Liu L, Zhang SM. The potential of Zr-based bulk metallic glasses as biomaterials. Front Mater Sci Chin. 2010;4(1):34.

    Google Scholar 

  111. Liu L, Qiu CL, Sun M, Chen Q, Chan KC, Pang GK. Improvements in the plasticity and biocompatibility of ZrCuNiAl bulk metallic glass by the microalloying of Nb. Mater Sci Eng, A. 2007;449–451:193.

    Google Scholar 

  112. Liu L, Qiu CL, Chen Q, Chan KC, Zhang SM. Deformation behavior, corrosion resistance and cytotoxicity of Ni-free Zr-based bulk metallic glasses. J Biomater Res Part A. 2008;86(1):160.

    CAS  Google Scholar 

  113. Liu Z, Chan KC, Liu L. Enhanced glass forming ability and plasticity of a Ni-free Zr-based bulk metallic glass. J Alloy Compd. 2009;487(1–2):152.

    CAS  Google Scholar 

  114. Liu L, Chan KC, Yu Y, Chen Q. Bio-activation of Ni-free Zr-based bulk metallic glass by surface modification. Intermetallics. 2010;18(10):1978.

    CAS  Google Scholar 

  115. Huang L, Qiao D, Green BA, Liaw PK, Wang J, Pang S, Zhang T. Bio-corrosion study on zirconium-based bulk-metallic glasses. Intermetallics. 2009;17(4):195.

    CAS  Google Scholar 

  116. Zhang C, Li X, Liu SQ, Liu H, Yu LJ, Liu L. 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications. J Alloy Compd. 2019;790:963.

    CAS  Google Scholar 

  117. Bai WQ, Li LL, Li RL, Gu CD, Wang XL, Jin G, Liu DG, Tu JP. Deposition and characterization of a ZrN/Zr/aC multilayer: implication on bio-tribological and corrosion behaviors. Surf Coat Technol. 2017;324:509.

    CAS  Google Scholar 

  118. Li HF, Zhou FY, Li L, Zheng YF. Design and development of novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility. Sci Rep. 2016;6:24414.

    CAS  Google Scholar 

  119. Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22(11):1253.

    CAS  Google Scholar 

  120. Li Y, Qi Y, Zhang H, Xia Z, Xie T, Li W, Zhong D, Zhu H, Zhou M. Gram-scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic. Biomaterials. 2020;226:119538.

    CAS  Google Scholar 

  121. Zhang Q, Tu H, Yin H, Wei F, Zhao H, Xue C, Wei Q, Zhang Z, Zhang X, Zhang S, Han Q, Li Y, Zhao RC, Yan J, Li J, Wang W. Si nanowire biosensors using a FinFET fabrication process for real time monitoring cellular ion actitivies. In: IEEE International Electron Devices Meeting. San Francisco; 2018. 29.

  122. Shi K, Zhang Y, Zhang J, Xie Z. Electrochemical properties of niobium coating for biomedical application. Coatings. 2019;9(9):546.

    CAS  Google Scholar 

  123. Miao Z, Chen S, Xu CY, Ma Y, Qian H, Xu Y, Chen H, Wang X, He G, Lu Y, Zhao Q, Zha Z. PEGylated rhenium nanoclusters: a degradable metal photothermal nanoagent for cancer therapy. Chem Sci. 2019;10(21):5435.

    CAS  Google Scholar 

  124. Luo DF, Ning P, Zhang F, Zhou Y, Zhang HM, Fu T. Hydrothermal calcification surface modification of biomedical tantalum. Rare Met. 2021;40(4):928.

    CAS  Google Scholar 

  125. Zheng B, Bai Y, Chen H, Pan H, Ji W, Gong X, Wu X, Wang H, Chang J. Targeted delivery of tungsten oxide nanoparticles for multifunctional anti-tumor therapy via macrophages. Biomater Sci. 2018;6(6):1379.

    CAS  Google Scholar 

  126. Zhao M, Zhu XY, Li YZ, Chang JN, Li MX, Ma LH, Guo XY. A Lindqvist-type [W6O19]2- organic-inorganic compound: synthesis, characterization, antibacterial activity and preliminary studies on the mechanism of action. Tungsten. 2021. https://doi.org/10.1007/s42864-021-00073-x.

    Article  Google Scholar 

  127. Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev. 2014;43(5):1501.

    CAS  Google Scholar 

  128. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals. 2011;24(1):135.

    CAS  Google Scholar 

  129. Valentini P, Pompa PP. Gold nanoparticles for naked-eye DNA detection: smart designs for sensitive assays. RSC Adv. 2013;3(42):19181.

    CAS  Google Scholar 

  130. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60(11):1307.

    CAS  Google Scholar 

  131. Zhang X. Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem Biophys. 2015;72(3):771.

    CAS  Google Scholar 

  132. Li J, Cha R, Zhao X, Guo H, Luo H, Wang M, Zhou F, Jiang X. Gold nanoparticles cure bacterial infection with benefit to intestinal microflora. ACS Nano. 2019;13(5):5002.

    CAS  Google Scholar 

  133. Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, Chen Y, Xu Q, Zhou L, Ding H, Sun Z, Yan S, Mao Z, Wang W. A nanomedicine fabricated from gold nanoparticles-decorated metal-organic framework for cascade chemo/chemodynamic cancer therapy. Adv Sci. 2020;7(17):2001060.

    CAS  Google Scholar 

  134. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581.

    CAS  Google Scholar 

  135. Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.

    CAS  Google Scholar 

  136. Xu W, Xie L, Zhu J, Xu X, Ye Z, Wang C, Ma Y, Ying Y. Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications. ACS Photonics. 2016;3(12):2308.

    CAS  Google Scholar 

  137. Hayes DM, Cvitkovic E, Golbey RB, Scheiner E, Helson L, Krakoff IH. High dose Cis-platinum diammine dichloride amelioration of renal toxicity by mannitol diuresis. Cancer. 1977;39(4):1372.

    CAS  Google Scholar 

  138. Wang Z, Deng Z, Zhu G. Emerging platinum (IV) prodrugs to combat cisplatin resistance: from isolated cancer cells to tumor microenvironment. Dalton Trans. 2019;48(8):2536.

    CAS  Google Scholar 

  139. Guo D, Xu S, Huang Y, Jiang H, Yasen W, Wang N, Su Y, Qian J, Li J, Zhang C, Zhu X. Platinum (IV) complex-based two-in-one polyprodrug for a combinatorial chemo-photodynamic therapy. Biomaterials. 2018;177:67.

    CAS  Google Scholar 

  140. Xu S, Zhu X, Zhang C, Huang W, Zhou Y, Yan D. Oxygen and Pt (II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nat Commun. 2018;9:2053.

    Google Scholar 

  141. Huang X, Huang R, Gou S, Wang Z, Wang H. Anticancer platinum (IV) prodrugs containing monoaminophosphonate ester as a targeting group inhibit matrix metalloproteinases and reverse multidrug resistance. Bioconjug Chem. 2017;28(4):1305.

    CAS  Google Scholar 

  142. Cai T, Fang G, Tian X, Yin JJ, Chen C, Ge C. Optimization of antibacterial efficacy of noble-metal-based core–shell nanostructures and effect of natural organic matter. ACS Nano. 2019;13(11):12694.

    CAS  Google Scholar 

  143. Zhang Y, Yan X, Shi L, Cen M, Wang J, Ding Y, Yao Y. Platinum (II) metallatriangle: construction, coassembly with polypeptide, and application in combined cancer photodynamic and chemotherapy. Inorg Chem. 2021;60(11):7627.

    CAS  Google Scholar 

  144. Yin W, Zhao L, Zhou L, Gu Z, Liu X, Tian G, Jin S, Yan L, Ren W, Xing G, Zhao Y. Enhanced red emission from GdF3: Yb3+, Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging. Chem-A Eur J. 2012;18(30):9239.

    CAS  Google Scholar 

  145. Xia A, Gao Y, Zhou J, Li C, Yang T, Wu D, Wu L, Li F. Core-shell NaYF4:Yb3+, Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials. 2011;32(29):7200.

    CAS  Google Scholar 

  146. Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials. 2010;31(12):3287.

    CAS  Google Scholar 

  147. Cheng L, Wang C, Ma X, Wang Q, Cheng Y, Wang H, Li Y, Liu Z. Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv Func Mater. 2013;23(3):272.

    CAS  Google Scholar 

  148. Yang T, Sun Y, Liu Q, Feng W, Yang P, Li F. Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials. 2012;33(14):3733.

    CAS  Google Scholar 

  149. Liu Q, Sun Y, Yang T, Feng W, Li C, Li F. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc. 2011;133(43):17122.

    CAS  Google Scholar 

  150. Zhou J, Yu M, Sun Y, Zhang X, Zhu X, Wu Z, Wu D, Li F. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials. 2011;32(4):1148.

    CAS  Google Scholar 

  151. Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q, Zhou L, Peng W, Hua Y, Shi J. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials. 2012;33(4):1079.

    CAS  Google Scholar 

  152. Zhou J, Zhu X, Chen M, Sun Y, Li F. Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging [J]. Biomaterials. 2012;33(26):6201.

    CAS  Google Scholar 

  153. Liu Q, Sun Y, Li C, Zhou J, Li C, Yang T, Zhang X, Yi T, Wu D, Li F. 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano. 2011;5(4):3146.

    CAS  Google Scholar 

  154. Wang C, Tao H, Cheng L, Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011;32(26):6145.

    CAS  Google Scholar 

  155. Wang C, Cheng L, Liu Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials. 2011;32(4):1110.

    CAS  Google Scholar 

  156. Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L, Song H. Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. J Mater Chem. 2011;21(17):6193.

    CAS  Google Scholar 

  157. Dai Y, Zhang C, Cheng Z, Li C, Kang X, Yang D, Lin J. pH-responsive drug delivery system based on luminescent CaF2: Ce3+/Tb3+-poly (acrylic acid) hybrid microspheres. Biomaterials. 2012;33(8):2583.

    CAS  Google Scholar 

  158. Kang X, Yang D, Dai Y, Shang M, Cheng Z, Zhang X, Lian H, Ma P, Lin J. Poly (acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release. Nanoscale. 2013;5(1):253.

    CAS  Google Scholar 

  159. Yang D, Kang X, Dai Y, Hou Z, Cheng Z, Li C, Lin J. Hollow structured upconversion luminescent NaYF4: Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials. 2013;34(5):1601.

    CAS  Google Scholar 

  160. Xu Z, Li C, Hou Z, Zhai X, Huang S, Lin J. Monodisperse core–shell structured up-conversion Yb(OH)CO3@ YbPO4: Er3+ hollow spheres as drug carriers. Biomaterials. 2011;32(17):4161.

    CAS  Google Scholar 

  161. Wang SP, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties. Mater Sci Eng, C. 2017;73:80.

    CAS  Google Scholar 

  162. Yang W, Liu Y, Pang S, Liaw PK, Zhang T. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics. 2020;124:106845.

    CAS  Google Scholar 

  163. Liu J, Yi L. Liquid Metal Biomaterials. Berlin: Springer; 2018:1.

    Google Scholar 

  164. Sun X, Yuan B, Sheng L, Rao W, Liu J. Liquid metal enabled injectable biomedical technologies and applications. Appl Mater Today. 2020;20:100722.

    Google Scholar 

  165. Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B. 2016;4(32):5349.

    CAS  Google Scholar 

  166. Zhang XD, Liu LB, Zhao JC, Wang JL, Zheng F, Jin ZP. High-efficiency combinatorial approach as an effective tool for accelerating metallic biomaterials research and discovery. Mater Sci Eng, C. 2014;39(1):273.

    CAS  Google Scholar 

  167. Materials Genome Initiative for Global Competitiveness, Executive Office of the President National Science and Technology Council, 2011.

  168. Olson GB. Genomic materials design: the ferrous frontier. Acta Mater. 2013;61(3):771.

    CAS  Google Scholar 

  169. Ling J, Chen W, Sheng Y, Li W, Zhang L, Du Y. A MGI-oriented investigation of the Young's modulus and its application to the development of a novel Ti–Nb–Zr–Cr bio-alloy. Mater Sci Eng C. 2020;106:110265.

    CAS  Google Scholar 

  170. Su Y, Fu H, Bai Y, Jiang X, Xie J. Progress in materials genome engineering in China. Acta Metall Sin. 2020;56(10):1313.

    CAS  Google Scholar 

  171. Xiu P, Jia Z, Lv J, Yin C, Cheng Y, Zhang K, Song C, Leng H, Zheng Y, Cai H, Liu Z. Tailored surface treatment of 3D printed Ti-6Al-4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocking bone implant interface. ACS Appl Mater Interfaces. 2016;8(28):17964.

    CAS  Google Scholar 

  172. Cai H. Application of 3D printing in orthopedics: status quo and opportunities in China. Annals Transl Med. 2015;3(S1):S12.

    Google Scholar 

  173. Li C, Pisignano D, Zhao Y, Xue J. Advances in medical applications of additive manufacturing. Engineering. 2020;6(11):1222.

    CAS  Google Scholar 

  174. Liang H, Zhang XB, Lv Y, Gong L, Wang R, Zhu X, Yang R, Tan W. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc Chem Res. 2014;47(6):1891.

    CAS  Google Scholar 

  175. Liu JC, Wang JF, Han Q, Ping S, Liu LL, Chen LJ, Zhao JW, Streb C, Song YF. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew Chem Int Ed. 2021. https://doi.org/10.1002/ange.202017318.

    Article  Google Scholar 

  176. Wang L, Xu D, Jiang L, Gao J, Tang Z, Xu Y, Chen X, Zhang H. Transition metal dichalcogenides for sensing and oncotherapy: status, challenges, and perspective. Adv Funct Mater. 2021;31(5):2004408.

    CAS  Google Scholar 

  177. Yang C, Luo Y, Lin H, Ge M, Shi J, Zhang X. Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration. ACS Nano. 2021;15:1086.

    CAS  Google Scholar 

  178. Huang J, Li Z, Mao Y, Li Z. Progress and biomedical applications of MXenes. Nano Select. 2021. https://doi.org/10.1002/nano.202000309.

    Article  Google Scholar 

  179. Zhu QB, Li B, Yang DD, Liu C, Feng S, Chen ML, Sun Y, Tian NY, Su X, Wang XM, Qiu S, Li QW, Li XM, Zeng HB, Cheng HM, Sun DM. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat Commun. 2021;12:1798.

    CAS  Google Scholar 

  180. Fan Y, Liu S, Yi Y, Rong H, Zhang J. Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts. ACS Nano. 2021;15:2005.

    CAS  Google Scholar 

  181. Chernov VI, Triss SV, Skuridin V, Lishmanov YB. Thallium-199: a new radiopharmaceutical for myocardial perfusion imaging. Int J Card Imaging. 1996;12:119.

    CAS  Google Scholar 

  182. Zhuikov BL. Production of medical radionuclides in Russia: status and future-a review. Appl Radiat Isot. 2014;84:48.

    CAS  Google Scholar 

  183. Borodin OY, Karpov EN, Lishmanov YB, Skuridin VS, Ignatovich IA, Ussov WY. First experience of SPECT-CT with the radiopharmaceutical Thallium-199 chloride in diagnosis and assessment of the metastatic spread of lung cancer. Medical Visualization. 2022. https://doi.org/10.24835/1607-0763-1016.

  184. Xie J, Zhao M, Wang C, Yong Y, Gu Z, Zhao Y. Rational design of nanomaterials for various radiation-induced diseases prevention and treatment. Adv Healthcare Mater. 2021;10(6):2001615.

    CAS  Google Scholar 

  185. Ren X, Huo M, Wang M, Lin H, Zhang X, Yin J, Chen Y, Chen H. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging. ACS Nano. 2019;13:6438.

    CAS  Google Scholar 

  186. Chatterjee E, Marr T, Dhagat P, Remcho VT. A microfluidic immunosensor based on ferromagnetic resonance induced in magnetic bead labels. Sens Actuators, B Chem. 2011;156:651.

    CAS  Google Scholar 

  187. Wang L, Lin J. Recent advances on magnetic nanobead based biosensors: from separation to detection. TrAC Trends Anal Chem. 2020;128:115915.

    CAS  Google Scholar 

  188. Wang S, Xu J, Wang W, Wang GJN, Rastak R, Molina-Lopez F, Chung JW, Niu S, Feig VR, Lopez J, Lei T, Kwon Y, Kim Y, Foudeh AM, Ehrlich A, Gasperini A, Yun Y, Murmann B, Tok JBH, Bao Z. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature. 2018;555:83.

    CAS  Google Scholar 

  189. Song E, Li J, Won SM, Bai W, Rogers J. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat Mater. 2020;19:590.

    CAS  Google Scholar 

  190. Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater. 2021. https://doi.org/10.1038/s41563-021-00921-8.

    Article  Google Scholar 

  191. Ma Z, Huang Q, Xu Q, Zhuang Q, Zhao X, Yang Y, Qiu H, Yang Z, Wang C, Chai Y, Zheng Z. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater. 2021. https://doi.org/10.1038/s41563-020-00902-3.

    Article  Google Scholar 

  192. Kuang D, Lei Y, Yang L, Wang Y. Preclinical study of a self-expanding pulmonary valve for the treatment of pulmonary valve disease. Regen Biomater. 2020;7(6):609.

    CAS  Google Scholar 

  193. Shi R, Zhang J, Tian J, Zhao C, Li Z, Zhang Y, Li Y, Wu C, Tian W, Li Z. An effective self-powered strategy to endow titanium implant surface with associated activity of anti-biofilm and osteogenesis. Nano Energy. 2020;77:105201.

    CAS  Google Scholar 

  194. Sheng H, Zhou J, Li B, He Y, Zhang X, Liang J, Zhou J, Su Q, Xie E, Lan W, Wang K, Yu C. A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body. Sci Adv. 2021;7(2):3097.

    Google Scholar 

  195. Haraguchi H, Matsuura H. In chemical speciation for metallomics. Proceedings of International Symposium on Bio-Trace Elements 2002 (BITRE 2002). eds. S. Enomoto and Y. Seko, The Institute of Physical and Chemical Research (RIKEN). Wako; 2003; 3.

  196. Haraguchi H. Metallomics as integrated biometal science. J Anal At Spectrom. 2004;19(1):5.

    CAS  Google Scholar 

  197. Cun S, Sun H. A zinc-binding site by negative selection induces metallodrug susceptibility in an essential chaperonin. Proc Natl Acad Sci. 2010;107(11):4943.

    CAS  Google Scholar 

  198. Qian C, Wang JQ, Song CL, Wang LL, Ji LN, Chao H. The induction of mitochondria-mediated apoptosis in cancer cells by ruthenium (II) asymmetric complexes. Metallomics. 2013;5(7):844.

    CAS  Google Scholar 

  199. He L, Li Y, Tan CP, Ye RR, Chen MH, Cao JJ, Liang NJ, Mao ZW. Cyclometalated iridium (III) complexes as lysosome-targeted photodynamic anticancer and real-time tracking agents. Chem Sci. 2015;6(10):5409.

    CAS  Google Scholar 

  200. Zhao P, Yang X. Vanadium compounds modulate PPARγ activity primarily by increasing PPARγ protein levels in mouse insulinoma NIT-1 cells. Metallomics. 2013;5(7):836.

    CAS  Google Scholar 

  201. Du X, Li H, Wang Z, Qiu S, Liu Q, Ni J. Selenoprotein P and selenoprotein M block Zn2+-mediated Aβ42 aggregation and toxicity. Metallomics. 2013;5(7):861.

    CAS  Google Scholar 

  202. Zhu X, Tan X. Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-Ljungdahl pathway. Sci China, Ser B: Chem. 2009;52(12):2071.

    CAS  Google Scholar 

  203. Cai YB, Li XH, Jing J, Zhang JL. Effect of distal histidines on hydrogen peroxide activation by manganese reconstituted myoglobin. Metallomics. 2013;5(7):828.

    CAS  Google Scholar 

  204. Cun S, Lai YT, Chang YY, Sun H. Structure-oriented bioinformatic approach exploring histidine-rich clusters in proteins. Metallomics. 2013;5(7):904.

    CAS  Google Scholar 

  205. Sun H. Metallomics in China. Metallomics. 2013;5:782.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Chinese Academy of Engineering (Nos. 2019-ZD-25-04, 2019-ZD-31-03, 2019-ZD-27-03, 2020-JJZD-1 and 2021-HYZD-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Ling Tu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, HL., Zhao, HB., Fan, YY. et al. Recent developments in nonferrous metals and related materials for biomedical applications in China: a review. Rare Met. 41, 1410–1433 (2022). https://doi.org/10.1007/s12598-021-01905-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01905-y

Keywords

Navigation