Skip to main content
Log in

Edge-guided heart-shaped skyrmion

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Magnetic skyrmion, which is a kind of swirl-like topological protected spin structure, shows great potential in the racetrack memory. So far, this progress is in obstacle by the skyrmion Hall effect which means that the direction of skyrmion motion will deviate from the driving direction. In our work, based on the hybrid skyrmion, we propose a new way to solve the deviation problem. Instead of the acquirement of great nanotechnology to confine the skyrmion in the one-dimensional (1D) potential well, the hybrid skyrmion in a three-layer film can also be guided by only an edge formed through etching the surface layer. The edge will provide a local spatial asymmetry for the skyrmion. This asymmetry can both constrain the skyrmion to a heart shape and equilibrate the moving skyrmion to the etched line. Further simulations confirm that the heart-shaped skyrmion is also available in the multi-racetrack memory. It is thinked that our proposal might be another efficient method to help to solve the skyrmion Hall effect, and the study might be able to contribute to the skyrmion-based device.

Graphic abstract

摘要

磁斯格明子是一种涡旋状受拓扑保护的自旋结构, 它极有希望应用于赛道存储器中。但斯格明子在运动过程中存在斯格明子霍尔效应, 即运动方向偏离驱动电流方向, 这使得磁斯格明子赛道存储器的研究受到严重制约。基于以往混合斯格明子的研究, 我们在本文提供了一种解决斯格明子霍尔效应的新思路。在传统思路中, 人们往往需要使用极高精度的纳米加工技术来刻蚀极窄的一维势阱, 以控制斯格明子运动。但我们的研究发现, 在三层膜结构中, 当其表层(氧化层)被刻蚀后, 混合斯格明子的运动轨迹由刻蚀后得到的边缘所引导。边缘的存在使得空间上出现了不对称性, 这种不对称性不仅使得斯格明子被扭曲为心形, 也迫使运动中的斯格明子平衡在边缘下方。进一步的模拟证明, 这种心形斯格明子也可以应用于多轨复合的赛道存储器中。本研究为解决斯格明子霍尔效应提供了一个新的思路, 为斯格明子自旋电子学器件的研究做出了一些贡献。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4

References

  1. Sampaio J, Cros V, Rohart S, Thiaville A, Fert A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat Nanotechnol. 2013;8(11):839.

    Article  CAS  Google Scholar 

  2. Fert A, Cros V, Sampaio J. Skyrmions on the track. Nat Nanotechnol. 2013;8(3):152.

    Article  CAS  Google Scholar 

  3. Zhang S, Wang J, Zheng Q, Zhu Q, Liu X, Chen S, Jin C, Liu Q, Jia C, Xue D. Current-induced magnetic skyrmions oscillator. New J Phys. 2015;17(2):023061.

    Article  Google Scholar 

  4. Jin C, Wang J, Wang W, Song C, Wang J, Xia H, Liu Q. Array of synchronized nano-oscillators based on repulsion between domain wall and skyrmion. Phys Rev Appl. 2018;9(4):044007.

    Article  CAS  Google Scholar 

  5. Zhang X, Ezawa M, Zhou Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci Rep. 2015;5(1):9400.

    Article  Google Scholar 

  6. Huang Y, Kang W, Zhang X, Zhou Y, Zhao W. Magnetic skyrmion-based synaptic devices. Nanotechnology. 2017;28(8):08LT02.

    Article  Google Scholar 

  7. Song KM, Jeong JS, Pan B, Zhang X, Xia J, Cha S, Park TE, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W, Kang W, Ju H, Woo S. Skyrmion-based artificial synapses for neuromorphic computing. Nat Electron. 2020;3(3):148.

    Article  Google Scholar 

  8. Ma F, Zhou Y, Braun HB, Lew WS. Skyrmion-based dynamic magnonic crystal. Nano Lett. 2015;15(6):4029.

    Article  CAS  Google Scholar 

  9. Zázvorka J, Jakobs F, Heinze D, Keil N, Kromin S, Jaiswal S, Litzius K, Jakob G, Virnau P, Pinna D, Everschor-Sitte K, Rózsa L, Donges A, Nowak U, Kläui M. Thermal skyrmion diffusion used in a reshuffler device. Nat Nanotechnol. 2019;14(7):658.

    Article  Google Scholar 

  10. Wang Z, Yuan HY, Cao Y, Li ZX, Duine RA, Cha S, Yan P. Magnonic frequency comb through nonlinear Magnon-Skyrmion scattering. Phys Rev Lett. 2021;127(3):037202.

    Article  CAS  Google Scholar 

  11. Yu X, Kanazawa N, Zhang W, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y. Skyrmion flow near room temperature in an ultralow current density. Nat Commun. 2012;3(1):988.

    Article  CAS  Google Scholar 

  12. Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine RA, Everschor K, Garst M, Rosch A. Spin transfer torques in MnSi at ultralow current densities. Science. 2010;330(6011):1648.

    Article  CAS  Google Scholar 

  13. Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P, Böni P. Topological Hall effect in the A phase of MnSi. Phys Rev Lett. 2009;102(18):186602.

    Article  CAS  Google Scholar 

  14. Purnama I, Gan WL, Wong DW, Lew WS. Guided current-induced skyrmion motion in 1D potential well. Sci Rep. 2015;5(1):10620.

    Article  CAS  Google Scholar 

  15. Lai P, Zhao G, Tang H, Ran N, Wu S, Xia J, Zhang X, Zhou Y. An improved racetrack structure for transporting a skyrmion. Sci Rep. 2017;7(1):45330.

    Article  CAS  Google Scholar 

  16. Zhang X, Zhou Y, Ezawa M. Antiferromagnetic skyrmion: stability, creation and manipulation. Sci Rep. 2016;6(1):24795.

    Article  CAS  Google Scholar 

  17. Jin C, Song C, Wang J, Liu Q. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect. Appl Phys Lett. 2016;109(18):182404.

    Article  Google Scholar 

  18. Zhang X, Zhou Y, Ezawa M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat Commun. 2016;7(1):10293.

    Article  CAS  Google Scholar 

  19. Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat Mater. 2020;19(1):34.

    Article  CAS  Google Scholar 

  20. Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M. Control and manipulation of a magnetic skyrmionium in nanostructures. Phys Rev B. 2016;94(9):094420.

    Article  Google Scholar 

  21. Legrand W, Chauleau JY, Maccariello D, Reyren N, Collin S, Bouzehouane K, Jaouen N, Cros V, Fert A. Hybrid chiral domain walls and skyrmions in magnetic multilayers. Sci Adv. 2018;4(7):eaat0415.

    Article  CAS  Google Scholar 

  22. Kim KW, Moon KW, Kerber N, Nothhelfer J, Everschor-Sitte K. Asymmetric skyrmion Hall effect in systems with a hybrid Dzyaloshinskii-Moriya interaction. Phys Rev B. 2018;97(22):224427.

    Article  CAS  Google Scholar 

  23. Jin C, Zhang C, Song C, Wang J, Xia H, Ma Y, Wang J, Wei Y, Wang J, Liu Q. Current-induced motion of twisted skyrmions. Appl Phys Lett. 2019;114(19):192401.

    Article  Google Scholar 

  24. Jena J, Göbel B, Ma T, Kumar V, Saha R, Mertig I, Felser C, Parkin SSP. Elliptical Bloch skyrmion chiral twins in an antiskyrmion system. Nat Commun. 2020;11(1):1115.

    Article  Google Scholar 

  25. Peng L, Takagi R, Koshibae W, Shibata K, Nakajima K, Arima T, Nagaosa N, Seki S, Yu X, Tokura Y. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Nat Nanotechnol. 2020;15(3):181.

    Article  CAS  Google Scholar 

  26. Cui B, Yu D, Shao Z, Liu Y, Wu H, Nan P, Zhu Z, Wu C, Guo T, Chen P, Zhou HA, Xi L, Jiang W, Wang H, Liang S, Du H, Wang KL, Wang W, Wu K, Han X, Zhang G, Yang H, Yu G. Néel-type elliptical Skyrmions in a laterally asymmetric magnetic multilayer. Adv Mater. 2021;33(12):2006924.

    Article  CAS  Google Scholar 

  27. Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G. A strategy for the design of skyrmion racetrack memories. Sci Rep. 2014;4(1):6784.

    Article  CAS  Google Scholar 

  28. Belabbes A, Bihlmayer G, Blügel S, Manchon A. Oxygen-enabled control of Dzyaloshinskii-Moriya interaction in ultra-thin magnetic films. Sci Rep. 2016;6(1):24634.

    Article  CAS  Google Scholar 

  29. Srivastava T, Schott M, Juge R, Krizakova V, Belmeguenai M, Roussigné Y, Bernand-Mantel A, Ranno L, Pizzini S, Chérif SM, Stashkevich A, Auffret S, Boulle O, Gaudin G, Chshiev M, Baraduc C, Béa H. Large-voltage tuning of Dzyaloshinskii-Moriya interactions: a route toward dynamic control of skyrmion chirality. Nano Lett. 2018;18(8):4871.

    Article  CAS  Google Scholar 

  30. Yang H, Boulle O, Cros V, Fert A, Chshiev M. Controlling Dzyaloshinskii-Moriya interaction via chirality dependent atomic-layer stacking, insulator capping and electric field. Sci Rep. 2018;8(1):12356.

    Article  Google Scholar 

  31. Rohart S, Thiaville A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys Rev B. 2013;88(18):184422.

    Article  Google Scholar 

  32. Sinova J, Valenzuela SO, Wunderlich J, Back C, Jungwirth T. Spin hall effects. Rev Mod Phys. 2015;87(4):1213.

    Article  Google Scholar 

  33. Zhang X, Ezawa M, Xiao D, Zhao G, Liu Y, Zhou Y. All-magnetic control of skyrmions in nanowires by a spin wave. Nanotechnology. 2015;26(22):225701.

    Article  Google Scholar 

  34. Thiele AA. Steady-state motion of magnetic domains. Phys Rev Lett. 1973;30(6):230.

    Article  Google Scholar 

  35. Mahfouzi F, Kioussis N. First-principles calculation of the Dzyaloshinskii-Moriya interaction: a Green’s function approach. Phys Rev B. 2021;103(9):094410.

    Article  CAS  Google Scholar 

  36. Zhang SL, van der Laan G, Wang WW, Haghighirad AA, Hesjedal T. Direct observation of twisted surface skyrmions in bulk crystals. Phys Rev Lett. 2018;120(22):227202.

    Article  CAS  Google Scholar 

  37. Zhang S, van der Laan G, Müller J, Heinen L, Garst M, Bauer A, Berger H, Pfleiderer C, Hesjedal T. Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet. Proc Natl Acad Sci USA. 2018;115(25):6386.

    Article  CAS  Google Scholar 

  38. Pollard SD, Garlow JA, Kim KW, Cheng S, Cai K, Zhu Y. Bloch chirality induced by an interlayer Dzyaloshinskii-Moriya interaction in ferromagnetic multilayers. Phys Rev Lett. 2020;125(22):227203.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Scientific Fund of China (Nos. 51771086 and 12074158) and the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities (No. B20063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Fang Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CL., Wang, JN., Song, CK. et al. Edge-guided heart-shaped skyrmion. Rare Met. 41, 865–870 (2022). https://doi.org/10.1007/s12598-021-01844-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01844-8

Navigation