Skip to main content
Log in

Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries

  • Highlight
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

锂金属电池被认为是目前替代锂离子电池最有前途的技术, 可以满足下一代高能量和高功率二次电池技术的需求。然而, 诸如电解液电化学稳定性差、枝晶的生长、正极电极材料结构随着电化学循环的破坏以及由此导致的库仑效率低和循环寿命短等挑战, 一直困扰着锂金属电池的商业化推广。有鉴于此, 马建民和他的同事们设计了一种高氟含量和高偶极矩分子的双氟乙酰胺, 作为锂金属电池的电解液添加剂。该分子可以改变锂离子的溶剂化结构, 调控锂离子的吸附与扩散, 并在其他碳酸盐溶剂分解前, 于负极上形成梯度的固液电解质膜。该方法可实现锂金属负极在电化学循环过程中无枝晶产生, 且电池具有长的循环寿命和优异的倍率性能。这项工作探索了一种新的多功能电解质添加剂, 同时该添加剂也可以适用于其他金属电池化学。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Reproduced with permission from Ref. [18]. Copyright 2020, Wiley–VCH GmbH

Fig. 2

Reproduced with permission from Ref. [18]. Copyright 2020, Wiley–VCH GmbH

References

  1. Brandt K. Historical development of secondary lithium batteries. Solid State Ionics. 1994;69:173.

    Article  CAS  Google Scholar 

  2. Livage J. Sol–gel chemistry and electrochemical properties of vanadium oxide gels. Solid State Ionics. 1996;86–88:935.

    Article  Google Scholar 

  3. Lin Z, Guo X, Wang Z, Wang B, He S, O’Dell LA, Huang J, Li H, Yu H, Chen L. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery. Nano Energy. 2020;73:104786.

    Article  CAS  Google Scholar 

  4. Shin DM, Bachman JE, Taylor MK, Kamcev J, Park JG, Ziebel ME, Velasquez E, Jarenwattananon NN, Sethi GK, Cui Y, Long JR. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries. Adv Mater. 2020;32(10):1905771.

    Article  CAS  Google Scholar 

  5. Sun H, Zhu G, Zhu Y, Lin MC, Chen H, Li YY, Hung WH, Zhou B, Wang X, Bai Y, Gu M, Huang CL, Tai HC, Xu X, Angell M, Shyue JJ, Dai H. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv Mater. 2020;32:2001741.

    Article  CAS  Google Scholar 

  6. Liu Y, Cui Y. Lithium metal anodes: a recipe for protection. Joule. 2017;1(4):649.

    Article  Google Scholar 

  7. Liang J, Zhang X, Zeng X, Yan M, Yin Y, Xin S, Wang WP, Wu XW, Shi JL, Wan LJ, Guo YG. Enabling a durable electrochemical interface via an artificial amorphous cathode electrolyte interphase for hybrid solid/liquid lithium-metal batteries. Angew Chem. 2020;132(16):6647.

    Article  Google Scholar 

  8. Wang H, Lin D, Xie J, Liu Y, Chen H, Li Y, Xu J, Zhou G, Zhang Z, Pei A, Zhu Y, Liu K, Wang K, Cui Y. An interconnected channel-like framework as host for lithium metal composite anodes. Adv Energy Mater. 2019;9(7):1802720.

    Article  Google Scholar 

  9. Wang H, Liu Y, Li Y, Cui Y. Lithium metal anode materials design: interphase and host. Electrochem Energy Rev. 2019;2(4):509.

    Article  Google Scholar 

  10. Wu X, Pan K, Jia M, Ren Y, He H, Zhang L, Zhang S. Electrolyte for lithium protection: from liquid to solid. Green Energy Environ. 2019;4(4):360.

    Article  Google Scholar 

  11. Zhang X, Yang Y, Zhou Z. Towards practical lithium-metal anodes. Chem Soc Rev. 2020;49(10):3040.

    Article  CAS  Google Scholar 

  12. Zhang H, Eshetu GG, Judez X, Li C, Rodriguez-Martínez LM, Armand M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew Chem Int Ed. 2018;57(46):15002.

    Article  CAS  Google Scholar 

  13. Mogi R, Inaba M, Jeong SK, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate. J Electrochem Soc. 2002;149(12):A1578.

    Article  CAS  Google Scholar 

  14. Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27(10):1605989.

    Article  Google Scholar 

  15. Lu Y, Tu Z, Archer LA. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater. 2014;13(10):961.

    Article  CAS  Google Scholar 

  16. Qian Y, Niehoff P, Börner M, Grützke M, Mönnighoff X, Behrends P, Nowak S, Winter M, Schappacher FM. Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. J Power Sources. 2016;329:31.

    Article  CAS  Google Scholar 

  17. Heine J, Hilbig P, Qi X, Niehoff P, Winter M, Bieker P. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. J Electrochem Soc. 2015;162(6):A1094.

    Article  CAS  Google Scholar 

  18. Li F, He J, Liu J, Wu M, Hou Y, Wang H, Qi S, Liu Q, Hu J, Ma J. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew Chem Int Ed. 2021;60(12):6600.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Chao Zhang or Liu-Yue Cao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Zhang, WC. & Cao, LY. Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Met. 41, 726–729 (2022). https://doi.org/10.1007/s12598-021-01843-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01843-9

Navigation