Skip to main content
Log in

Application of static masking technique in magnetron sputtering technology for the production of linearly variable filters

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Variable filters are key components for compact spectral imagers. In this paper, we present a method for the fabrication of linearly variable filters based on Bühler HELIOS machine (plasma assisted reactive magnetron sputtering). These filters are obtained by producing a variation of the thickness of all the layers of the coating, using adapted masks placed in between the sputtering targets for the low and high refractive index materials and the substrates. Variable band pass filter from 550 up to 1000 nm is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source and a thickness gradient is produced

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data can be provided upon request.

References

  1. Mouroulis, P., Green, R.O., Chrien, T.G.: Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Appl. Opt. 39(13), 2210–2220 (2000)

    Article  Google Scholar 

  2. Piegari, A., Bulir, J.: Variable narrowband transmission filters with a wide rejection band for spectrometry. Appl. Opt. 45, 3768–3773 (2006)

    Article  Google Scholar 

  3. Piegari, A., Bulir, J., KrasilnikovaSytchkova, A.: Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process. Appl. Opt. 47, C151–C156 (2008)

    Article  Google Scholar 

  4. Williams, C., Rughoobur, G., Flewitt, A.J., Wilkinson, T.D.: Single-step fabrication of thin-film linear variable bandpass filters based on metal–insulator–metal geometry. Appl. Opt. 55, 9237–9241 (2016)

    Article  Google Scholar 

  5. F. Lemarquis, L. Abel-Tiberini, C. Koc, “400–1000 nm all-dielectric linear variable filters for ultra compact spectrometers,” Proc. SPIE 10565, International Conference on Space Optics—ICSO 2010, 105655U (5 September 2019).

  6. Ko, C.-H., Tsai, J.-R., Wang, B.-J., Lin, S.-F., Hong, C.-T., Chiu, W.-H.: Visible and near-IR range linear variable filter with two-dimensional modeling. Novel Opt. Syst. Des. Optim XXI 10746, 1074607 (2018)

    Google Scholar 

  7. Emadi, A., Wu, H., Grabarnik, S., De Graaf, G., Hedsten, K., Enoksson, P., Correia, J., Wolffenbuttel, R.: Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer. Sens. Actuators A162, 400–405 (2010)

    Article  Google Scholar 

  8. Abel-Tibérini, L., Lemarquis, F., Lequime, M.: Masking mechanisms applied to thin-film coatings for the manufacturing of linear variable filters for two-dimensional array detectors. Appl. Opt. 47, 5706–5714 (2008)

    Article  Google Scholar 

  9. P. Bernardi, M. Bonafous, M. Motisi, J-M. Reess, J. Tanrin, D. Laubier, “Wedge filter imaging spectrometer,” Proc. SPIE 10563, International Conference on Space Optics—ICSO 2014, 1056355 (17 November 2017)

  10. Lemarquis, F., Begou, T., Moreau, A., Lumeau, J.: Broadband antireflection coatings for visible and infrared ranges. CEAS Space J. 11(4), 567–578 (2019)

    Article  Google Scholar 

  11. Begou, T., Lemarchand, F., Lemarquis, F., Moreau, A., Lumeau, J.: High performance thin-film optical filters with stress compensation. J. Opt. Soc. Am. 36(11), C113–C121 (2019)

    Article  Google Scholar 

  12. Begou, T., Krol, H., Stojcevski, D., Lemarchand, F., Lequime, M., Grezes-Besset, C., Lumeau, J.: Complex optical interference filters with stress compensation for space applications. CEAS Space J 9(4), 441–449 (2017)

    Article  Google Scholar 

  13. T. Begou, F. Lemarquis, A. Moreau, F. Lemarchand, H. Reus, D. Arhilger, H. Hagedorn and J. Lumeau, “Linearly variable filters fabricated by magnetron sputtering technology”, Proc. SPIE 11180, International Conference on Space Optics—ICSO 2018, 1118084 (12 July 2019)

  14. T. Begou, F. Lemarquis, A. Moreau, F. Lemarchand, H. Reus, D. Arhilger, H. Hagedorn and J. Lumeau, “Non-linearly variable filters for spectro-imaging systems”, Proceedings SPIE 11852, International Conference on Space Optics—ICSO 2020; 118521B (2021)

  15. M. Scherer, J. Pistner, W. Lehnert, “UV- and VIS filter coatings by plasma assisted reactive magnetron sputtering (PARMS),” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper MA7.

  16. Abel-Tiberini, L., Lemarquis, F., Lequime, M.: Dedicated spectrophotometer for localized transmittance and reflectance measurements. Appl. Opt. 45(7), 1386–1391 (2006)

    Article  Google Scholar 

  17. https://materion.com/-/media/files/precision-optics/linearvariablefilters.pdf. Accessed 22 Nov 2021

  18. https://www.edmundoptics.com/f/linear-variable-bandpass-filters-5fd8f505/14865/. Accessed 22 Nov 2021

  19. Macleod, H.A.: Thin-film optical filters, 4th edn. CRC Press, Taylor & Francis Group, Boca Raton, FL (2010)

    Book  Google Scholar 

Download references

Funding

The authors would like to acknowledge the French space agency (CNES) for the funding of this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the work.

Corresponding author

Correspondence to Julien Lumeau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begou, T., Lemarquis, F., Moreau, A. et al. Application of static masking technique in magnetron sputtering technology for the production of linearly variable filters. CEAS Space J 14, 217–226 (2022). https://doi.org/10.1007/s12567-021-00402-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-021-00402-3

Keywords

Navigation