Skip to main content
Log in

Optimizing Hole Shape and Improving Surface Quality of Inconel 718 Alloy by High-Temperature Chemical Assisted Laser Processing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

High-quality micro-hole processing of superalloy has always been challenging work in the aerospace and automobile industries. A novel high-temperature chemical assisted laser processing technology was investigated to provide an one-step in-situ method for eliminating defect layer and optimizing hole shape, thereby solving the two challenges of surface roughness and taper in micro-hole processing. An environmental-friendly chemical liquid was adopted. Chemical etching occurred at the interface of the material-modified layer in the local high-temperature environment to minimize surface roughness, and the chemical liquid played a role of a confinement layer, limiting the expansion of the high-temperature gas and plasma leading to the laser plasma ablation pressure applied to the substrate material. The influences of defocus and laser pulse interval on hole formation and geometry characteristics, taper angle, and surface roughness were investigated. The experiment results revealed that when the laser pulse interval was less than or equal to 0.1 ms, the blind hole shape was close to being cylindrical, when the laser pulse interval was 1 ms, the blind hole was a conical shape with a deeper depth. The interaction mechanism in high-temperature chemical assisted laser drilling was analyzed, including laser plasma ablation pressure, and liquid jet following cavitation bubble collapse in the liquid confined region. This study has a potential application in the field of super-alloy drilling.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.Y. Zhang, J. Wang, X. Wang, J. Zhang, Y. Hayasaki, D. Kim, S.F. Sun,  Opt. Laser Technol. 143, 107335 (2021). https://doi.org/10.1016/j.optlastec.2021.107335

    Article  CAS  Google Scholar 

  2. Z.N. Yang, P.F. Ji, Z. Zhang, Y.D. Ju, Z. Wang, Q. Zhang, C.C. Wang, W. Xu, Opt. Commun. 475, 126237 (2020). https://doi.org/10.1016/j.optcom.2020.126237

    Article  CAS  Google Scholar 

  3. J.M. Silva, F. Ferreira, S.M. Abreu, J.E. Matos, L.M.P. Durãoa, Compos. Struct. 181, 306–314 (2017). https://doi.org/10.1016/j.compstruct.2017.08.080

    Article  Google Scholar 

  4. F.H. Caki, O.N. Celik, Met. Mater. Int. 27, 3529–3537 (2021). https://doi.org/10.1007/s12540-020-00667-z

    Article  CAS  Google Scholar 

  5. T.J. Chen, B.Q. Yang, Met. Mater. Int. 27, 5299–5313 (2021). https://doi.org/10.1007/s12540-020-00775-w

    Article  CAS  Google Scholar 

  6. X.S. Jia, J. Dong, Y.Q. Chen, H.L. Wang, G.Z. Zhu, K. Aleksei, X. Zhu, Opt. Lett. 45, 1691–1694 (2020). https://doi.org/10.1364/OL.383207

    Article  Google Scholar 

  7. W. Perrie, A. Rushton, M. Gill, P. Fox, W. O’Neill, Appl. Surf. Sci. 248, 213–217 (2005). https://doi.org/10.1016/j.apsusc.2005.03.005

    Article  CAS  Google Scholar 

  8. N. Ren, K.B. Xia, H.Y. Yang, F.Q. Gao, S.W. Song, Ceram. Int. 47, 11465–11473 (2021). https://doi.org/10.1016/j.ceramint.2020.12.274

    Article  CAS  Google Scholar 

  9. L.M. Wee, E.Y.K. Ng, A.H. Prathama, H. Zheng, Opt. Laser Technol. 43, 62–71 (2011). https://doi.org/10.1016/j.optlastec.2010.05.005

    Article  CAS  Google Scholar 

  10. V. Tangwarodomnukun, P. Likhitangsuwat, O. Tevinpibanphan, C. Dumkum, Int. J. Mach. Tool. Manu. 89, 14–28 (2015). https://doi.org/10.1016/j.ijmachtools.2014.10.013

    Article  Google Scholar 

  11. S. Mullick, Y.K. Madhukar, S. Roy, A.K. Nath, Int. J. Mach. Tool. Manu. 91, 62–75 (2015). https://doi.org/10.1016/j.ijmachtools.2015.02.005

    Article  Google Scholar 

  12. V. Tangwarodomnukun, J. Wang, C.Z. Huang, H.T. Zhu, Int. J. Mach. Tool Manu. 79, 1–16 (2014). https://doi.org/10.1016/j.ijmachtools.2013.12.003

    Article  Google Scholar 

  13. C. Deng, H. Yeo, H. Ki, Opt. Express 28, 11128–11143 (2020). https://doi.org/10.1364/OE.389497

    Article  CAS  Google Scholar 

  14. Y. Liu, M.R. Wei, T. Zhang, H.C. Qiao, H. Li, Opt. Laser Technol. 137, 106820 (2021). https://doi.org/10.1016/j.optlastec.2020.106820

    Article  CAS  Google Scholar 

  15. V. Khuat, Y.C. Ma, J.H. Si, T. Chen, F. Chen, X. Hou, Appl. Surf. Sci. 289, 529–532 (2014). https://doi.org/10.1016/j.apsusc.2013.11.030

    Article  CAS  Google Scholar 

  16. B. Lia, W.F. Sun, X. Xiang, X.L. Jiang, W. Liao, H.J. Wang, X.D. Yuan, X.D. Jiang, X.T. Zu, J. Mater. Sci. Technol. 19, 3231–3240 (2022). https://doi.org/10.1016/j.jmrt.2022.06.061

    Article  CAS  Google Scholar 

  17. T. Chen, A. Pan, C.X. Li, J. Si, X. Hou, Appl. Surf. Sci. 325, 145–150 (2015). https://doi.org/10.1016/j.apsusc.2014.11.012

    Article  CAS  Google Scholar 

  18. H. Zhu, Z.Y. Zhang, K. Xu, J.L. Xu, S.J. Zhu, A.B. Wang, H. Qi, Materials 12, 41 (2018). https://doi.org/10.3390/ma12010041

    Article  CAS  Google Scholar 

  19. A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Appl. Phys. B 81, 1015–1047 (2005). https://doi.org/10.1007/s00340-005-2036-6

    Article  CAS  Google Scholar 

  20. C.L. Zheng, H. Shen, J. Manuf. Process. 73, 354 (2022). https://doi.org/10.1016/j.jmapro.2021.11.020

    Article  Google Scholar 

  21. Q. Zhang, S.F. Sun, F.Y. Zhang, J. Wang, Q.Q. Lv, Y. Shao, Q.Y. Liu, J. Shao, X.F. Liu, Y. Zhang, Int. J. Adv. Manuf. Tech. 106, 155–162 (2020). https://doi.org/10.1007/s00170-019-04541-0

    Article  Google Scholar 

  22. B. Han, K. Köhler, K. Jungnickel, R. Mettin, W. Lauterborn, A. Vogel, J. Fluid Mech. 771, 706–742 (2015). https://doi.org/10.1017/jfm.2015.183

    Article  Google Scholar 

  23. B. Han, R.H. Zhu, Z.Y. Guo, L. Liu, X.W. Ni, Eur. J. Mech. B-Fluid 72, 114–122 (2018). https://doi.org/10.1016/j.euromechflu.2018.05.003

    Article  Google Scholar 

  24. S.C. Feng, C.Z. Huang, J. Wang, H.T. Zhu, Mat. Sci. Semicon. Proc. 82, 112–125 (2018). https://doi.org/10.1016/j.mssp.2018.03.035

    Article  CAS  Google Scholar 

  25. P. Wang, Z. Zhang, D.H. Liu, W.Z. Qiu, Y. Zhang, G.J. Zhang, Opt. Laser Technol. 151, 108022 (2022). https://doi.org/10.1016/j.optlastec.2022.108022

    Article  CAS  Google Scholar 

  26. Q. Tang, C.J. Wu, T.H. Wu, Opt. Commun. 478, 126410 (2021). https://doi.org/10.1016/j.optcom.2020.126410

    Article  CAS  Google Scholar 

  27. J. Lv, X. Dong, K.D. Wang, W.Q. Duan, Z.J. Fan, X.S. Mei, Int. J. Adv. Manuf. Tech. 86, 1443–1451 (2016). https://doi.org/10.1007/s00170-015-8279-4

    Article  Google Scholar 

  28. S.S. Mao, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 77, 2464 (2000). https://doi.org/10.1063/1.1318239

    Article  CAS  Google Scholar 

  29. Z. Zhang, Z. Xu, C.C. Wang, S.Y. Liu, Z.N. Yang, Q. Zhang, W. Xu, Opt. Laser Technol. 139, 106968 (2021). https://doi.org/10.1016/j.optlastec.2021.106968

    Article  CAS  Google Scholar 

  30. M. Dell’Aglio, A.D. Giacomo, Appl. Surf. Sci. 515, 146031 (2020). https://doi.org/10.1016/j.apsusc.2020.146031

    Article  CAS  Google Scholar 

  31. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775–784 (1990). https://doi.org/10.1063/1.346783

    Article  CAS  Google Scholar 

  32. T.T.P. Nguyen, R.T. Yamagishi, Y. Ito, Opt. Lasers Eng. 126, 105937 (2020). https://doi.org/10.1016/j.optlaseng.2019.105937

    Article  Google Scholar 

  33. J.Y. Long, M.H. Eliceiri, Y.X. Ouyang, Y.K. Zhang, X.Z. Xie, C.P. Grigoropoulos, Opt. Lasers Eng. 137, 106334 (2021). https://doi.org/10.1016/j.optlaseng.2020.106334

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by 111 project of China [grant number D21017]; Belt and Road Innovative Talents Exchange Program, China [grant number DL2021025003L]; China-Slovakia Exchange Program [grant number 2022-5-12]; National Natural Science Foundation of China [grant number 51775289]; Major science and technology innovation project of Shandong Province [grant number 2019JZZY010402]; Key Research and Development Plan of Shandong Province, China [grant number 2019GGX104097]; West Coast New Area 2020 Science and Technology Source Innovation Special Project, Qingdao City, China [grant number 2020-103] and [grant number 2021-70], and Qingdao Postdoctoral Applied Research Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Han or Shufeng Sun.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Han, B., Ehrhardt, M. et al. Optimizing Hole Shape and Improving Surface Quality of Inconel 718 Alloy by High-Temperature Chemical Assisted Laser Processing. Met. Mater. Int. 29, 1991–2003 (2023). https://doi.org/10.1007/s12540-022-01344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01344-z

Keywords

Navigation