Skip to main content
Log in

Identifying Visual Attention Features Accurately Discerning Between Autism and Typically Developing: a Deep Learning Framework

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Atypical visual attention is a hallmark of autism spectrum disorder (ASD). Identifying the attention features accurately discerning between people with ASD and typically developing (TD) at the individual level remains a challenge. In this study, we developed a new systematic framework combining high accuracy deep learning classification, deep learning segmentation, image ablation and a direct measurement of classification ability to identify the discriminative features for autism identification. Our two-stream model achieved the state-of-the-art performance with a classification accuracy of 0.95. Using this framework, two new categories of features, Food & drink and Outdoor-objects, were identified as discriminative attention features, in addition to the previously reported features including Center-object and Human-faces, etc. Altered attention to the new categories helps to understand related atypical behaviors in ASD. Importantly, the area under curve (AUC) based on the combined top-9 features identified in this study was 0.92, allowing an accurate classification at the individual level. We also obtained a small but informative dataset of 12 images with an AUC of 0.86, suggesting a potentially efficient approach for the clinical diagnosis of ASD. Together, our deep learning framework based on VGG-16 provides a novel and powerful tool to recognize and understand abnormal visual attention in ASD, which will, in turn, facilitate the identification of biomarkers for ASD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data needed to evaluate the conclusions are present in the paper. Additional data related to this paper may be requested from the authors.

References

  1. Birmingham E, Cerf M, Adolphs R (2011) Comparing social attention in autism and amygdala lesions: effects of stimulus and task condition. Soc Neurosci 6(5–6):420–435. https://doi.org/10.1080/17470919.2011.561547

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chawarska K, Macari S, Shic F (2013) Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biol Psychiat 74(3):195–203. https://doi.org/10.1016/j.biopsych.2012.11.022

    Article  PubMed  Google Scholar 

  3. Shic F, Bradshaw J, Klin A, Scassellati B, Chawarska K (2011) Limited activity monitoring in toddlers with autism spectrum disorder. Brain Res 1380:246–254. https://doi.org/10.1016/j.brainres.2010.11.074

    Article  CAS  PubMed  Google Scholar 

  4. Rice K, Moriuchi JM, Jones W, Klin A (2012) Parsing heterogeneity in autism spectrum disorders: visual scanning of dynamic social scenes in school-aged children. J Am Acad Child Adolesc Psychiatry 51(3):238–248. https://doi.org/10.1016/j.jaac.2011.12.017

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dawson G, Webb SJ, McPartland J (2005) Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Dev Neuropsychol 27(3):403–424. https://doi.org/10.1207/s15326942dn2703_6

    Article  PubMed  Google Scholar 

  6. Sasson NJ, Elison JT, Turner-Brown LM, Dichter GS, Bodfish JW (2011) Brief report: circumscribed attention in young children with autism. J Autism Dev Disord 41(2):242–247. https://doi.org/10.1007/s10803-010-1038-3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang S, Jiang M, Duchesne XM, Laugeson EA, Kennedy DP, Adolphs R et al (2015) Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron 88(3):604–616. https://doi.org/10.1016/j.neuron.2015.09.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duan H, Zhai G, Min X, Che Z, Fang Y, Yang X et al (2019) A dataset of eye movements for the children with autism spectrum disorder. In: Proceedings of the 10th ACM Multimedia Systems Conference: pp. 255–260. https://doi.org/10.1145/3304109.3325818

  9. Arru G, Mazumdar P, Battisti F (2019) Exploiting visual behaviour for autism spectrum disorder identification. In: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW): IEEE pp. 637–640. https://doi.org/10.1109/ICMEW.2019.00123

  10. Osterling J, Dawson G (1994) Early recognition of children with autism: a study of first birthday home videotapes. J Autism Dev Disord 24(3):247–257. https://doi.org/10.1007/bf02172225

    Article  CAS  PubMed  Google Scholar 

  11. Mundy P, Sigman M, Kasari C (1994) The theory of mind and joint-attention deficits in autism. Understanding other minds: perspectives from autism, pp 181–203. https://psycnet.apa.org/record/1993-98373-008. Accessed 9 Mar 2022

  12. Leekam SR, Ramsden CAH (2006) Dyadic orienting and joint attention in preschool children with autism. J Autism Dev Disord 36(2):185–197. https://doi.org/10.1007/s10803-005-0054-1

    Article  PubMed  Google Scholar 

  13. Brenner LA, Turner KC, Mueller R-A (2007) Eye movement and visual search: are there elementary abnormalities in autism? J Autism Dev Disord 37(7):1289–1309. https://doi.org/10.1007/s10803-006-0277-9

    Article  PubMed  Google Scholar 

  14. Mundy P, Sullivan L, Mastergeorge AM (2009) A parallel and distributed-processing model of joint attention, social cognition and autism. Autism Res 2(1):2–21. https://doi.org/10.1002/aur.61

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chevallier C, Kohls G, Troiani V, Brodkin ES, Schultz RT (2012) The social motivation theory of autism. Trends Cogn Sci 16(4):231–239. https://doi.org/10.1016/j.tics.2012.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guillon Q, Hadjikhani N, Baduel S, Roge B (2014) Visual social attention in autism spectrum disorder: insights from eye tracking studies. Neurosci Biobehav Rev 42:279–297. https://doi.org/10.1016/j.neubiorev.2014.03.013

    Article  PubMed  Google Scholar 

  17. Graves A, Mohamed A-r, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: IEEE International Conference on Acoustics: speech and signal processing pp. 6645–6649. https://doi.org/10.1109/ICASSP.2013.6638947

  18. Kather JN, Pearson AT, Halama N, Jaeger D, Krause J, Loosen SH et al (2019) Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nature Med. https://doi.org/10.1038/s41591-019-0462-y

    Article  PubMed  Google Scholar 

  19. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ et al (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature. https://doi.org/10.1038/nature21369

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim J, Calhoun VD, Shim E, Lee J-H (2016) Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124:127–146. https://doi.org/10.1016/j.neuroimage.2015.05.018

    Article  PubMed  Google Scholar 

  21. Choi H, Jin KH (2018) Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res 344:103–109. https://doi.org/10.1016/j.bbr.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  22. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  23. Crippa A, Salvatore C, Perego P, Forti S, Nobile M, Molteni M et al (2015) Use of machine learning to identify children with autism and their motor abnormalities. J Autism Dev Disord 45(7):2146–2156. https://doi.org/10.1007/s10803-015-2379-8

    Article  PubMed  Google Scholar 

  24. Deshpande G, Libero LE, Sreenivasan KR, Deshpande HD, Kana RK (2013) Identification of neural connectivity signatures of autism using machine learning. Front Hum Neurosci 7(670):1–15. https://doi.org/10.3389/fnhum.2013.00670

    Article  Google Scholar 

  25. Duda M, Kosmicki JA, Wall DP (2014) Testing the accuracy of an observation-based classifier for rapid detection of autism risk. Transl Psychiatry 5(4):e556–e556. https://doi.org/10.1038/tp.2014.65

    Article  Google Scholar 

  26. Kosmicki JA, Sochat V, Duda M, Wall DP (2015) Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Transl Psychiatry 5(2):e514–e514. https://doi.org/10.1038/tp.2015.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stahl D, Pickles A, Elsabbagh M, Johnson MH (2012) Novel machine learning methods for ERP analysis: a validation from research on infants at risk for autism. Dev Neuropsychol 37(3):274–298. https://doi.org/10.1080/87565641.2011.650808

    Article  PubMed  Google Scholar 

  28. Zhou Y, Yu F, Duong T (2014) Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning. PLoS One 9(6):e90405. https://doi.org/10.1371/journal.pone.0090405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li X, Dvornek NC, Zhuang J, Ventola P, Duncan JS (2018) Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI. In: International conference on medical image computing and computer-assisted intervention: Springer pp. 206–214. https://doi.org/10.1007/978-3-030-00931-1_24

  30. Liu W, Li M, Yi L (2016) Identifying children with autism spectrum disorder based on their face processing abnormality: a machine learning framework. Autism Res 9(8):888–898. https://doi.org/10.1002/aur.1615

    Article  PubMed  Google Scholar 

  31. Jiang M, Francis SM, Srishyla D, Conelea C, Zhao Q, Jacob S et al. (2019) Classifying Individuals with ASD Through Facial Emotion Recognition and Eye-Tracking. In: 2019 41st Annual International Conference of the Ieee Engineering in Medicine and Biology Society (EMBC): IEEE pp. 6063–6068. https://doi.org/10.1109/EMBC.2019.8857005

  32. Li B, Barney E, Hudac C, Nuechterlein N, Ventola P, Shapiro L et al. (2020) Selection of Eye-Tracking Stimuli for Prediction by Sparsely Grouped Input Variables for Neural Networks: towards Biomarker Refinement for Autism. In: ACM Symposium on Eye Tracking Research and Applications: Association for Computing Machinery pp. 1–8. https://doi.org/10.1145/3379155.3391334

  33. Tao Y, Shyu M-L (2019) SP-ASDNET: CNN-LSTM based asd classification model using observer scanpaths. In: IEEE International Conference on Multimedia and Expo Workshops (ICMEW): IEEE pp. 641–646. https://doi.org/10.1109/icmew.2019.00124

  34. Liaqat S, Wu C, Duggirala PR, Cheung S-CS, Chuah C-N, Ozonoff S et al (2021) Predicting ASD diagnosis in children with synthetic and image-based eye gaze data. Signal Process Image Commun 94:116198. https://doi.org/10.1016/j.image.2021.116198

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jiang M, Zhao Q (2017) Learning Visual Attention to Identify People with Autism Spectrum Disorder. In: Proceedings of the IEEE International Conference on Computer Vision: IEEE pp. 3267–3276. https://doi.org/10.1109/iccv.2017.354

  36. Ruan MD, Webster PJ, Li X, Wang S (2021) Deep neural network reveals the world of autism from a first-person perspective. Autism Res 14(2):333–342. https://doi.org/10.1002/aur.2376

    Article  PubMed  Google Scholar 

  37. Bach S, Binder A, Montavon G, Klauschen F, Muller KR, Samek W (2015) On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10(7):e0130140. https://doi.org/10.1371/journal.pone.0130140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He KM, Gkioxari G, Dollar P, Girshick R (2020) Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 42(2):386–397. https://doi.org/10.1109/tpami.2018.2844175

    Article  PubMed  Google Scholar 

  39. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422. https://doi.org/10.1023/a:1012487302797

    Article  Google Scholar 

  40. Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L et al (1989) Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord 19(2):185–212. https://doi.org/10.1007/bf02211841

    Article  CAS  PubMed  Google Scholar 

  41. Le Couteur A, Rutter M, Lord C, Rios P, Robertson S, Holdgrafer M et al (1989) Autism diagnostic interview: a standardized investigator-based instrument. J Autism Dev Disord 19(3):363–387. https://doi.org/10.1007/bf02212936

    Article  PubMed  Google Scholar 

  42. Xu J, Jiang M, Wang S, Kankanhalli MS, Zhao Q (2014) Predicting human gaze beyond pixels. J Vis 14(1):28–28. https://doi.org/10.1167/14.1.28

    Article  CAS  PubMed  Google Scholar 

  43. Huang X, Shen C, Boix X, Zhao Q (2015) SALICON: Reducing the semantic gap in saliency prediction by adapting deep neural networks. In: 2015 IEEE International Conference on computer vision (ICCV): IEEE pp. 262–270. https://doi.org/10.1109/iccv.2015.38

  44. Cornia M, Baraldi L, Serra G, Cucchiara R (2016) A deep multi-level network for saliency prediction. In: 23rd International Conference on Pattern Recognition (ICPR): pp. 3488–3493. https://doi.org/10.1109/ICPR.2016.7900174

  45. Fan S, Shen Z, Jiang M, Koenig BL, Xu J, Kankanhalli MS et al (2018) Emotional Attention: a Study of Image Sentiment and Visual Attention. In: 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): IEEE pp. 7521–7531. https://doi.org/10.1109/cvpr.2018.00785

  46. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  47. Deng J, Dong W, Socher R, Li L-J, Li K, Li F-F (2009) ImageNet: A Large-Scale Hierarchical Image Database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition: IEEE pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848

  48. Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747

  49. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

  50. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R et al (2014) Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia: pp. 675–678. https://doi.org/10.1145/2647868.2654889

  51. Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014) Return of the devil in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531

  52. Fan X, Yao Q, Cai Y, Miao F, Sun F, Li Y (2018) Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings. IEEE J Biomed Health Inform 22(6):1744–1753. https://doi.org/10.1109/jbhi.2018.2858789

    Article  PubMed  Google Scholar 

  53. Green DM, Swets JA, Emmerich DS (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  54. Hinton GE, Roweis ST (2002) Stochastic neighbor embedding. Advances in neural information processing systems 15:857–864. https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf. Accessed 9 Mar 2022

  55. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature. https://doi.org/10.1038/nature21056

    Article  PubMed  PubMed Central  Google Scholar 

  56. Koker T, Mireshghallah F, Titcombe T, Kaissis G (2021) U-Noise: Learnable Noise Masks for Interpretable Image Segmentation. arXiv preprint arXiv:2101.05791

  57. Aminu M, Ahmad NA, Noor MHM (2021) Covid-19 detection via deep neural network and occlusion sensitivity maps. Alex Eng J 60(5):4829–4855. https://doi.org/10.1016/j.aej.2021.03.052

    Article  Google Scholar 

  58. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision (ECCV): Springer pp. 818–833. https://linkspringer.53yu.com/content/pdf/10.1007/978-3-319-10590-1_53.pdf. Accessed 9 Mar 2022

  59. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  60. Nebout A, Wei W, Liu Z, Huang L, Le Meur O (2019) Predicting saliency maps for asd people. In: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW): IEEE pp. 629–632. https://doi.org/10.1109/ICMEW.2019.00121

  61. Jetley S, Murray N, Vig E, Ieee (2016) End-to-End Saliency Mapping via Probability Distribution Prediction. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): pp. 5753–5761. https://doi.org/10.1109/cvpr.2016.620

  62. Kümmerer M, Wallis TS, Bethge M (2016) DeepGaze II: reading fixations from deep features trained on object recognition. arXiv preprint arXiv:1610.01563.

  63. Kruthiventi SSS, Ayush K, Babu RV (2017) DeepFix: a fully convolutional neural network for predicting human eye fixations. IEEE Trans Image Process 26(9):4446–4456. https://doi.org/10.1109/tip.2017.2710620

    Article  PubMed  Google Scholar 

  64. Heinsfeld AS, Franco AR, Cameron Craddock R, Buchweitz A, Meneguzzi F (2018) Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage-Clin 17:16–23. https://doi.org/10.1016/j.nicl.2017.08.017

    Article  PubMed  Google Scholar 

  65. Guo X, Dominick KC, Minai AA, Li H, Erickson CA, Lu LJ (2017) Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front Neurosci 11:460. https://doi.org/10.3389/fnins.2017.00460

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li H, Parikh NA, He L (2018) A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci 12:491. https://doi.org/10.3389/fnins.2018.00491

    Article  PubMed  PubMed Central  Google Scholar 

  67. Xiao Z, Wu J, Wang C, Jia N, Yang X (2019) Computer-aided diagnosis of school-aged children with ASD using full frequency bands and enhanced SAE: a multi-institution study. Exp Ther Med 17(5):4055–4063. https://doi.org/10.3892/etm.2019.7448

    Article  PubMed  PubMed Central  Google Scholar 

  68. Aghdam MA, Sharifi A, Pedram MM (2019) Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks. J Digit Imaging 32(6):899–918. https://doi.org/10.1007/s10278-019-00196-1

    Article  PubMed  PubMed Central  Google Scholar 

  69. Griffin JW, Scherf KS (2020) Does decreased visual attention to faces underlie difficulties interpreting eye gaze cues in autism? Mol Autism 11(1):1–14. https://doi.org/10.1186/s13229-020-00361-2

    Article  Google Scholar 

  70. Riby DM, Hancock PJB (2009) Do faces capture the attention of individuals with williams syndrome or autism? Evidence from tracking eye movements. J Autism Dev Disord 39(3):421–431. https://doi.org/10.1007/s10803-008-0641-z

    Article  PubMed  Google Scholar 

  71. Jones W, Klin A (2013) Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature. https://doi.org/10.1038/nature12715

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fletcher-Watson S, Leekam SR, Benson V, Frank MC, Findlay JM (2009) Eye-movements reveal attention to social information in autism spectrum disorder. Neuropsychologia 47(1):248–257. https://doi.org/10.1016/j.neuropsychologia.2008.07.016

    Article  CAS  PubMed  Google Scholar 

  73. Startsev M, Dorr M (2019) Classifying autism spectrum disorder based on scanpaths and saliency. In: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW): IEEE pp. 633–636. https://doi.org/10.1109/ICMEW.2019.00122

  74. Constantino JN, Kennon-McGill S, Weichselbaum C, Marrus N, Haider A, Glowinski AL et al (2017) Infant viewing of social scenes is under genetic control and is atypical in autism. Nature. https://doi.org/10.1038/nature22999

    Article  PubMed  PubMed Central  Google Scholar 

  75. Karlsson MF, Galazka MA, Gillberg C, Gillberg C, Miniscalco C, Billstedt E et al (2019) Social scene perception in autism spectrum disorder: an eye-tracking and pupillometric study. J Clin Exp Neuropsychol 41(10):1024–1032. https://doi.org/10.1080/13803395.2019.1646214

    Article  Google Scholar 

  76. Chawarska K, Ye S, Shic F, Chen L (2016) Multilevel differences in spontaneous social attention in toddlers with autism spectrum disorder. Child Dev 87(2):543–557. https://doi.org/10.1111/cdev.12473

    Article  PubMed  Google Scholar 

  77. Zantinge G, van Rijn S, Stockmann L, Swaab H (2017) Psychophysiological responses to emotions of others in young children with autism spectrum disorders: correlates of social functioning. Autism Res 10(9):1499–1509. https://doi.org/10.1002/aur.1794

    Article  PubMed  Google Scholar 

  78. Hanley M, McPhillips M, Mulhern G, Riby DM (2013) Spontaneous attention to faces in Asperger syndrome using ecologically valid static stimuli. Autism 17(6):754–761. https://doi.org/10.1177/1362361312456746

    Article  PubMed  Google Scholar 

  79. Nystrom P, Thorup E, Bolte S, Falck-Ytter T (2019) Joint attention in infancy and the emergence of autism. Biol Psychiat 86(8):631–638. https://doi.org/10.1016/j.biopsych.2019.05.006

    Article  PubMed  Google Scholar 

  80. Bandini LG, Anderson SE, Curtin C, Cermak S, Evans EW, Scampini R et al (2010) Food selectivity in children with autism spectrum disorders and typically developing children. J Pediatr 157(2):259–264. https://doi.org/10.1016/j.jpeds.2010.02.013

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schreck KA, Williams K, Smith AF (2004) A comparison of eating behaviors between children with and without autism. J Autism Dev Disord 34(4):433–438. https://doi.org/10.1023/b:jadd.0000037419.78531.86

    Article  PubMed  Google Scholar 

  82. Ahearn WH, Castine T, Nault K, Green G (2001) An assessment of food acceptance in children with autism or pervasive developmental disorder-not otherwise specified. J Autism Dev Disord 31(5):505–511. https://doi.org/10.1023/a:1012221026124

    Article  CAS  PubMed  Google Scholar 

  83. American Psychiatric Association, D. S., American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-5, vol 5. American Psychiatric Association, Washington, DC. https://www.amberton.edu/media/Syllabi/Spring%202022/Graduate/CSL6798_E1.pdf. Accessed 7 Apr 2022

  84. Chonchaiya W, Nuntnarumit P, Pruksananonda C (2011) Comparison of television viewing between children with autism spectrum disorder and controls. Acta Paediatr 100(7):1033–1037. https://doi.org/10.1111/j.1651-2227.2011.02166.x

    Article  PubMed  Google Scholar 

  85. Kheir NM, Ghoneim OM, Sandridge AL, Hayder SA, Al-Ismail MS, Al-Rawi F (2012) Concerns and considerations among caregivers of a child with autism in Qatar. BMC Res Notes 5:290–290. https://doi.org/10.1186/1756-0500-5-290

    Article  PubMed  PubMed Central  Google Scholar 

  86. Orsmond GI, Kuo H-Y (2011) The daily lives of adolescents with an autism spectrum disorder: discretionary time use and activity partners. Autism 15(5):579–599. https://doi.org/10.1177/1362361310386503

    Article  PubMed  PubMed Central  Google Scholar 

  87. Elbattah M, Loughnane C, Guérin J-L, Carette R, Cilia F, Dequen G (2021) Variational autoencoder for image-based augmentation of eye-tracking data. J Imaging 7(5):83. https://doi.org/10.3390/jimaging7050083

    Article  PubMed  PubMed Central  Google Scholar 

  88. Carette R, Elbattah M, Cilia F, Dequen G, Guérin J-L, Bosche J (2019) Learning to predict autism spectrum disorder based on the visual patterns of eye-tracking scanpaths. In: HEALTHINF, pp 103–112. https://doi.org/10.5220/0007402601030112

Download references

Acknowledgements

We are grateful for the financial support from the National Key R&D Program of China (2017YFC1307500), the National Natural Science Foundation of China (62027804 and 31671108) as well as the Scientific Instrument Innovation Team of the Chinese Academy of Sciences (GJJSTD20180002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuo Wang or Huihui Zhou.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

Participants gave written informed consent and the experiments were approved by the Caltech Institutional Review Board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Wang, L., Webster, P. et al. Identifying Visual Attention Features Accurately Discerning Between Autism and Typically Developing: a Deep Learning Framework. Interdiscip Sci Comput Life Sci 14, 639–651 (2022). https://doi.org/10.1007/s12539-022-00510-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-022-00510-6

Keywords

Navigation