Skip to main content
Log in

A critical-state constitutive model for considering the anisotropy in sandy slopes

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In this paper, a novel approach that associates the behavior of granular material with the void space and plastic deformations is applied to evaluate the strength changes with the loading directions. For this target, a critical state constitutive model based on Imam et al. (2005) is adopted to quantify the mobilized strengths. In this strategy, the tensor of fabric becomes co-direction with the tensor of loading to reach a constant magnitude of the unit at the compact state. In this state, the interlocks among the sand particles are strictly high, so that slip cannot happen. It is supposed that at this stage, the sample’s reaction to the stress changes is isotropic. The validation is performed against some datasets of monotonic element tests and cyclic triaxial tests. Then, the different aspects of the proposed model and their influences on the dynamic-induced displacements in the slopes are investigated. The results reveal the prominent role of the fabric in capturing the anisotropic behavior of sand, especially in slope stability analysis. Also, the results show that fabric evolution significantly affects the strength characteristics and the deformation of slopes. In the bedding plane orientations from 45 to 90°, the extended model ensures a higher magnitude for displacements in comparison to the basic model. The lack of considering the evolution of the fabric to the void ratio leads to a non-conservative analysis of the slopes, and it is a critical item in determining the displacements in dynamic loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aghajani HF, Salehzadeh H, Shahnazari H (2015) Stability analysis of sandy slope considering anisotropy effect in friction angle. Sadhana 40(6):1955–1974

    Article  Google Scholar 

  • Arson C (2020) Micro-macro mechanics ofdamage and healing in rocks. Open Geomechanics 1:1–40

    Article  Google Scholar 

  • Arthur J, Menzies B (1972) Inherent anisotropy in a sand. Géotechnique 22(1):115–128

    Article  Google Scholar 

  • Badakhshan E, Noorzad A (2015) Load eccentricity effects on behavior of circular footings reinforced with geogrid sheets. J Rock Mech Geotechnical Eng 7(6):691–699

    Article  Google Scholar 

  • Badakhshan E, Noorzad A (2017) Investigations on pullout behavior of geogrid-granular trench using CANAsand constitutive model. J Rock Mech Geotechnical Eng 9(4):726–740

    Article  Google Scholar 

  • Badakhshan E, Noorzad A, Zameni S (2018a) An updating void ratio model for large deformation simulation of geogrid-granular strip anchors plates. Comput Geotechnics 94:134–149

    Article  Google Scholar 

  • Badakhshan E, Noorzad A, Bouazza A, Zameni S (2018b) Predicting the behavior of unbound granular materials under repeated loads based on the compact shakedown state. Transportation Geotechnics 17:35–47

  • Chang CS, Meidani M, Deng Y (2017) A compression model for sand–silt mixtures based on the concept of active and inactive voids. Acta Geotech 12:1301–1317

    Article  Google Scholar 

  • Chen L, Zhang W, Chen F, Gu D, Wang L, Wang Z (2022) Probabilistic assessment of slope failure considering anisotropic spatial variability of soil properties. Geoscience Front 13(3):101371

    Article  Google Scholar 

  • Cheng H, Chen J, Chen R, Chen G, Zhong Y (2018) Risk assessment of slope failure considering the variability in soil properties. Comput Geotech 103:61–72

    Article  Google Scholar 

  • Dafalias YF, Papadimitriou AG, Li XS (2004) Sand plasticity model accounting for inherent fabric anisotropy. J. Eng. Mech 130(11):1319–1333

    Google Scholar 

  • Elia G, Cotecchia F, Pedone G, Vaunat J, Vardon P (2017) Numerical modelling of slope–vegetation–atmosphere interaction: an overview. Eng Geology Hydrogeol 50(3):249–270

    Article  Google Scholar 

  • Fu P, Dafalias YF (2015) Relationship between void- and contact normal-based fabric tensors for 2D idealized granular materials. Int. J. Solids Struct 63:68–81

    Article  Google Scholar 

  • Gao Z, Zhao J (2015) Constitutive modeling of anisotropic sand behavior in monotonic and cyclic loading. J. Eng. Mech 141(8). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000907

  • Gao Z, Zhao J (2017) A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution. Int. J. Solids Struct 106:200–212

    Article  Google Scholar 

  • Gao Z, Zhao J, Li XS, Dafalias YF (2014) A critical state sand plasticity model accounting for fabric evolution. Int. J. Numer. Anal. Methods Geomech 38(4):370–390

    Article  Google Scholar 

  • Gao Z, Zhao J, Li X (2021) The deformation and failure of strip footings on anisotropic cohesionless sloping grounds. Int. J. Numer. Anal. Methods Geomech 45:1526–1545

    Article  Google Scholar 

  • Ghorbani J, Airey D, Carter J (2021) Unsaturated soil dynamics: finite element solution including stress-induced anisotropy. Comput Geotechnics 133:104–162

    Article  Google Scholar 

  • Huang L, Cheng Y, Lib L (2021) Reliability and failure mechanism of a slope with non-stationarity and rotated transverse anisotropy in undrained soil strength. Comput Geotechnics 132:103970

    Article  Google Scholar 

  • Imam SMR, Morgenstern NR, Robertson PK, Chan DH (2005) A critical state constitutive model for liquefiable sand. Can Geotech J 42:830–855

    Article  Google Scholar 

  • Jamalinia E, Tehrani FS, Dunne S, Vardon P (2021) A data-driven surrogate approach for the temporal stability forecasting of vegetation covered dikes. Water 13(1):107

    Article  Google Scholar 

  • Ke H, Liu Y, Hu J, Qin R (2022) Experimental study on anisotropy of hydraulic conductivity for municipal solid waste. Waste Manag 137(1):39–49

    Article  Google Scholar 

  • Lade PV (2008) Failure criterion for cross−anisotropic soils. J. Geotech. Geoenviron. Eng 134(1):117–124

    Article  Google Scholar 

  • Lashkari A (2010) A SANISAND model with anisotropic elasticity. Soil Dyn. Earthq. Eng 30:62–77

    Article  Google Scholar 

  • Li XS, Dafalias YF (2002) Constitutive modeling of inherently anisotropic sand behavior. J Geotechnical Geoenviron Eng, ASCE 128(10):868–880

    Article  Google Scholar 

  • Li XS, Dafalias YF (2012) Anisotropic critical state theory: the role of fabric. J. Eng. Mech 138(3):263–275

    Google Scholar 

  • Li XS, Li X (2009) Micro–macro quantification of the internal structure of granular materials. J. Eng. Mech 135(7):641–656

    Google Scholar 

  • Li J, Zhang S, Liu L (2022a) Probabilistic analysis of pile-reinforced slopes in spatially variable soils with rotated anisotropy. Comput Geotechnics 146:104–124

    Article  Google Scholar 

  • Li Y, Zhang W, Zhang R (2022b) Numerical investigation on performance of braced excavation considering soil stress-induced anisotropy. Acta Geotechnica 17:563–575

    Article  Google Scholar 

  • Liu J, Otsubo M, Kawaguchi Y (2022) Anisotropy in small-strain shear modulus of granular materials: effects of particle properties and experimental conditions. Soils Foundations 62(1):101–105

    Article  Google Scholar 

  • Ma G, Rezania M, Mousavi M (2022) Uncertainty quantification of landslide runout motion considering soil interdependent anisotropy and fabric orientation. Landslides 19:1231–1247

    Article  Google Scholar 

  • Meidani M, Chang CS, Deng Y (2017) On active and inactive voids and a compression model for granular soils. Eng. Geol 222:156–167

    Article  Google Scholar 

  • Oda M (1972) Initial fabrics and their relations to mechanical properties of granular material. Soils Foundations 12(1):17–36

    Article  Google Scholar 

  • Pang R, Xu B, Kong X, Zhou Y, Zou D (2020) Seismic performance evaluation of high CFRD slopes subjected to near-fault ground motions based on generalized probability density evolution method. Eng. Geol 246:391–401

    Article  Google Scholar 

  • Petalas AL, Dafalias YF, Papadimitriou AG (2019) SANISAND-FN: an evolving fabric-based sand model accounting for stress principal axes rotation. Int. J. Numer. Anal. Methods Geomech 43(1):97–123

    Article  Google Scholar 

  • Petalas AL, Dafalias YF, Papadimitriou AG (2020) SANISAND-F: sand constitutive model with evolving fabric anisotropy. Int J Solids Structures 188:12–31

    Article  Google Scholar 

  • Poorooshasb HB (1995) One gravity model testing. Soils Found 35(3):55–59

    Article  Google Scholar 

  • Qin J, Zeng X, Ming H (2016) Centrifuge modeling and the influence of fabric anisotropy on seismic response of foundations. J Geotechnical Geoenviron Eng 7(2):147–154

    Google Scholar 

  • Rkaby A, Chegenizadeh A, Nikraz HR (2017) Anisotropic strength of large-scale geogrid−reinforced sand: experimental study. Soils Found 57(4):557–574

    Article  Google Scholar 

  • Song L, Xu B, Kong X, Pang R (2019) Three-dimensional slope dynamic stability reliability assessment based on the probability density evolution method. Soil Dyn. Earthq. Eng 120:360–368

    Article  Google Scholar 

  • Song L, Xu B, Kong X, Pang R (2021b) Reliability analysis of 3D rockfill dam slope stability based on the copula function. Int. J. Geomech 21(3):04021001

    Article  Google Scholar 

  • Song L, Yu X, Xu B, Pang R, Zhang Z (2021a) 3D slope reliability analysis based on the intelligent response surface methodology. Bull. Eng. Geol. Environ 80:735–749

    Article  Google Scholar 

  • Stockton E, Leshchinsky BA, Olsen MJ, Evans TM (2019) Influence of both anisotropic friction and cohesion on the formation of tension cracks and stability of slopes. Eng Geol 249:31–44

    Article  Google Scholar 

  • Taiebat M, Kaynia A, Dafalias YF (2011) Application of an anisotropic constitutive model for structured clay to seismic slope stability. J. Geotech. Geoenviron. Eng 137(5):492–504

    Article  Google Scholar 

  • Tang H, Wei W, Liu F (2020) Elastoplastic Cosserat continuum model considering strength anisotropy and its application to the analysis of slope stability. Comput Geotechnics 117:103235

    Article  Google Scholar 

  • Theocharis A, Vairaktaris E, Dafalias YF (2017) Scan line void fabric anisotropy tensors of granular media. Granular Matter 19:68–80

    Article  Google Scholar 

  • Tong Z, Fu P, Zhou S, Dafalias YF (2014) Experimental investigation of shear strength of sand with inherent fabric anisotropy. Acta Geotech 9:257–275

    Article  Google Scholar 

  • Tsiampousi A, Zdravkovic L, Potts D (2016) Numerical study of the effect of soil–atmosphere interaction on the stability and serviceability of cut slopes in London clay. Can Geotechnical J 54:405–418

    Article  Google Scholar 

  • Vairaktaris E, Alexandros, Theocharis A, Yannis F, Dafalias YF (2018) Correlation of fabric tensors for granular materials using 2D DEM. Acta Geotechnica 15:681–694

    Article  Google Scholar 

  • Wang R, Cao W, Zhang J (2019) Dependency of dilatancy ratio on fabric anisotropy in granular materials. J Eng Mech 145(10):1–13

    Article  Google Scholar 

  • Wang R, Dafalias YF, Fu P (2020) Fabric evolution and dilatancy within anisotropic critical state theory guided and validated by DEM. Int J Solids Structures 188:210–222

    Article  Google Scholar 

  • Wang R, Cao W, Xue L, Zhang J (2021a) An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand. Acta Geotechnica 16:43–65

    Article  Google Scholar 

  • Wang Z, Wang H, Xu W (2021b) Slope stability analysis considering the rotated anisotropy in soil properties. Eng Comput 38(7):264–271

    Article  Google Scholar 

  • Xue L, Yu J, Pan J, Wang R, Zhang J (2020) Three-dimensional anisotropic plasticity model for sand subjected to principal stress value change and axes rotation. Int. J. Numer. Anal. Methods Geomech 45:353–381

    Article  Google Scholar 

  • Yin ZY, Chang CS, Hicher PY (2010) Micromechanical modeling for effect of inherent anisotropy on cyclic behavior of sand. Int. J. Solids Struct 47:1933–1951

    Article  Google Scholar 

  • Yoshimine M (1996) Undrained flow deformation of saturated sand under monotonic loading conditions, Ph.D. thesis. University of Tokyo, Tokyo, Japan

    Google Scholar 

  • Yuan R, Yu HS, Hu N, He Y (2018) Non-coaxial soil model with an anisotropic yield criterion and its application to the analysis of strip footing problems. Comput Geotech 99:80–92

    Article  Google Scholar 

  • Zhang R, Goh A, Li Y, Hong L, Zhang W (2021a) Assessment of apparent earth pressure for braced excavations in anisotropic clay. Acta Geotechnica 16:1615–1626

    Article  Google Scholar 

  • Zhang R, Wu C, Goh A (2021b) Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning. Geoscience Front 12(1):365–373

    Article  Google Scholar 

  • Zhang T, Zhang C, Luob T (2022) Effect of stress anisotropy on deformation and particle breakage of silica sand at high-pressure compression tests. Constr Build Mater 316(17):125–135

    Google Scholar 

  • Zhang W, Li Y, Wu C, Li H, Goh A, Liu H (2022a) Prediction of lining response for twin tunnels constructed in anisotropic clay using machine learning techniques. Underground Space 7(1):122–133

    Article  Google Scholar 

  • Zhang W, Zhang R, Wu C, Goh A, Wang L (2022b) Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression. Underground Space 7(2):233–241

    Article  Google Scholar 

  • Zhao J, Guo N (2015) The interplay between anisotropy and strain localization in granular soils: a multiscale insight. Geotechnique 65(8):642–656

    Article  Google Scholar 

  • Zhao C, Pinzón G, Wiebicke M (2021) Evolution of fabric anisotropy of granular soils: x-ray tomography measurements and theoretical modelling. Comput Geotechnics 133:104–146

    Article  Google Scholar 

  • Zhu H, Zhang LM, Xiao T (2019) Evaluating stability of anisotropically deposited soil slopes. Can Geotech J 56(5):753–760

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to express his deep appreciation to Prof. Yannis F. Dafalias, University of California, Davis and Dr. Zhiwei Gao, University of Glasgow for their constructive comments. Moreover, the constructive suggestions by anonymous reviewers and the editorial board are appreciated.

Author information

Authors and Affiliations

Authors

Contributions

E. Badakhshan: investigation, analyze the data, and writing. A. Noorzad: main conceptual ideas, validation, review, and supervision. J. Vaunat: review, process the data, and supervision. G. Veylon: review, editing, and proof outline.

Corresponding author

Correspondence to Ehsan Badakhshan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Zeynal Abiddin Erguler

Appendix A

Appendix A

To determine the values of duz, the incremental movement of sand particles in the finite difference mesh, the equation between the strain and stress increments can be presented in a form of:

$$\left[\begin{array}{c}\textrm{d}{\sigma}_{xx}\\ {}\textrm{d}{\sigma}_{zz}\\ {}\textrm{d}{\sigma}_{xz}\end{array}\right]=\left[\begin{array}{ccc}{c}_{11}& {c}_{12}& {c}_{13}\\ {}{c}_{21}& {c}_{22}& {c}_{12}\\ {}{c}_{31}& {c}_{32}& {c}_{33}\end{array}\right]\left[\begin{array}{c}\textrm{d}{\varepsilon}_{xx}\\ {}\textrm{d}{\varepsilon}_{zz}\\ {}\textrm{d}{\varepsilon}_{xz}\end{array}\right]$$
(A1)

Therefore, the Eq. (28) can be calculated in a finite difference form as:

$$\frac{\dot{u}\left(i+1,j\right)-\dot{u}\left(i,j\right)}{\varDelta z}+\frac{\dot{v}\left(i+1,j\right)-\dot{v}\left(i,j\right)}{\varDelta x}=\alpha (z)\frac{\sum \dot{u}\left(i,j-1\right)-2\dot{u}\left(i,j\right)+\dot{u}\left(i,j+1\right)}{{\left(\varDelta t\right)}^2}\varDelta \varsigma -\frac{1}{G^{\textrm{ep}}(z)}{\int}_0^z\frac{\partial {\dot{\sigma}}_{xx}}{\partial x}\textrm{d}x$$
(A2)

Substituting from Eq. (A2) for \({\dot{\sigma}}_{xx}\) yields:

$$\frac{\dot{u}\left(i+1,j\right)-\dot{u}\left(i,j\right)}{\varDelta x}+\frac{\dot{v}\left(i+1,j\right)-\dot{v}\left(i,j\right)}{\varDelta z}=\alpha (z)\frac{\sum \dot{u}\left(i,j-1\right)-2\dot{u}\left(i,j\right)+\dot{u}\left(i,j+1\right)}{{\left(\varDelta t\right)}^2}\varDelta \varsigma -\frac{1}{G^{\textrm{ep}}(z)}{\int}_0^z\frac{\partial \left({c}_{11}{\dot{\varepsilon}}_{xx}+{c}_{12}{\dot{\varepsilon}}_{zz}+{c}_{13}{\dot{\varepsilon}}_{xz}\right)}{\partial x}\textrm{d}x$$
(A3)

Substituting from Eq. (A3) for \({\dot{\varepsilon}}_{xx},{\dot{\varepsilon}}_{zz}\) and \({\dot{\varepsilon}}_{xz}\) yields:

$$\frac{\dot{u}\left(i+1,j\right)-\dot{u}\left(i,j\right)}{\varDelta x}+\frac{\dot{v}\left(i+1,j\right)-\dot{v}\left(i,j\right)}{\varDelta z}=\alpha (z)\frac{\sum \dot{u}\left(i,j-1\right)-2\dot{u}\left(i,j\right)+\dot{u}\left(i,j+1\right)}{{\left(\varDelta t\right)}^2}\varDelta \varsigma -\frac{1}{G^{\textrm{ep}}(z)}\int_0^z\frac{\partial \left[{c}_{11}\frac{\partial \dot{u}}{\partial x}+{c}_{12}\frac{\partial \dot{v}}{\partial z}+{c}_{13}\frac{1}{2}\left(\frac{\partial \dot{u}}{\partial z}+\frac{\partial \dot{v}}{\partial x}\right)\right]}{\partial x}\textrm{d}x$$
(A4)

Therefore:

$$\frac{\dot{u}\left(i+1,j\right)-\dot{u}\left(i,j\right)}{\varDelta x}+\frac{\dot{v}\left(i+1,j\right)-\dot{v}\left(i,j\right)}{\varDelta z}=\alpha (z)\frac{\sum \dot{u}\left(i,j-1\right)-2\dot{u}\left(i,j\right)+\dot{u}\left(i,j+1\right)}{{\left(\varDelta t\right)}^2}\varDelta \varsigma -\frac{1}{G^{\textrm{ep}}(z)}\int_0^z\left[{c}_{11}\frac{\partial^2\dot{u}}{\partial {x}^2}+{c}_{12}\frac{\partial^2\dot{v}}{\partial z\partial x}+{c}_{13}\frac{1}{2}\left(\frac{\partial^2\dot{u}}{\partial x\partial z}+\frac{\partial^2\dot{v}}{\partial {x}^2}\right)\right]\textrm{d}x$$
(A5)

Thus, for a typical node, the corresponding ID equation is:

$${\displaystyle \begin{array}{l}\frac{\dot{u}\left(i+1,j\right)-\dot{u}\left(i,j\right)}{\varDelta x}+\frac{\dot{v}\left(i+1,j\right)-\dot{v}\left(i,j\right)}{\varDelta z}=\alpha (z)\frac{\sum \dot{u}\left(i,j-1\right)-2\dot{u}\left(i,j\right)+\dot{u}\left(i,j+1\right)}{{\left(\varDelta t\right)}^2}\varDelta \varsigma -\frac{c_{11}}{G^{\textrm{ep}}(z)}\frac{\sum \dot{u}\left(i,j-1\right)-2\dot{u}\left(i,j\right)+\dot{u}\left(i,j+1\right)}{{\left(\varDelta x\right)}^2}\varDelta x-\\ {}\frac{c_{12}}{G^{\textrm{ep}}(z)}\frac{\sum \dot{v}\left(i+1,j+1\right)-\dot{v}\left(i+1,j-1\right)-\dot{v}\left(i-1,j+1\right)+\dot{v}\left(i-1,j-1\right)}{4\varDelta x\varDelta z}\varDelta x-\frac{c_{13}}{G^{\textrm{ep}}(z)}\frac{\sum \dot{u}\left(i+1,j+1\right)-\dot{u}\left(i+1,j-1\right)-\dot{u}\left(i-1,j+1\right)+\dot{u}\left(i-1,j-1\right)}{4\varDelta x\varDelta z}\varDelta x-\end{array}}$$
$$\frac{c_{13}}{2{G}^{\textrm{ep}}(z)}\frac{\sum \dot{v}\left(i,j-1\right)-2\dot{v}\left(i,j\right)+\dot{v}\left(i,j+1\right)}{{\left(\varDelta x\right)}^2}\varDelta x$$
(A6)

Similarly, this manner is adopted for Eq. (A6) to provide two equations with two unknowns as and . Through solving this system, the deformations of slope under dynamic loads can determine.

\({\displaystyle \begin{array}{l}\frac{\dot{u}\left(i+1,j\right)-\dot{u}\left(i,j\right)}{\varDelta x}+\frac{\dot{v}\left(i+1,j\right)-\dot{v}\left(i,j\right)}{\varDelta z}=-\frac{c_{22}}{G^{\textrm{ep}}(z)}\frac{\sum \dot{v}\left(i,j-1\right)-2\dot{v}\left(i,j\right)+\dot{v}\left(i,j+1\right)}{{\left(\varDelta z\right)}^2}\varDelta z-\\ {}\frac{c_{23}}{2{G}^{\textrm{ep}}(z)}\frac{\sum \dot{v}\left(i+1,j+1\right)-\dot{v}\left(i+1,j-1\right)-\dot{v}\left(i-1,j+1\right)+\dot{v}\left(i-1,j-1\right)}{4\varDelta x\varDelta z}\varDelta z-\frac{c_{21}}{2{G}^{\textrm{ep}}(z)}\frac{\sum \dot{u}\left(i+1,j+1\right)-\dot{u}\left(i+1,j-1\right)-\dot{u}\left(i-1,j+1\right)+\dot{u}\left(i-1,j-1\right)}{4\varDelta x\varDelta z}\varDelta z-\end{array}}\frac{c_{23}}{2{G}^{\textrm{ep}}(z)}\frac{\sum \dot{u}\left(i+1,j+1\right)-\dot{u}\left(i+1,j-1\right)-\dot{u}\left(i-1,j+1\right)+\dot{u}\left(i-1,j-1\right)}{4\varDelta x\varDelta z}\varDelta x-\frac{c_{13}}{2{G}^{\textrm{ep}}(z)}\frac{\sum \dot{u}\left(i,j-1\right)-2\dot{u}\left(i,j\right)+\dot{u}\left(i,j+1\right)}{{\left(\varDelta z\right)}^2}\varDelta z\) (A7)

The numerical scheme employed to evaluate the governing equation is simple and will be demonstrated briefly here. In this scheme, the solution domain is covered by a finite difference mesh, which is shown in Fig. 17. It is assumed that the meshes have jmax, columns and imax rows which spaced at uniform intervals of Δt, and Δz, respectively. Δz is kept constant thus Δϛ= Δz. The evaluation of the u̇ at every point of the mesh is the main analysis object. This is compiled through deriving the coefficients of the linear formulation for \(\dot{u}(1),\dot{u}(2),\dots, \dot{u}\left({n}_{\textrm{max}}\right),\) where nmax = (imax − 1)jmax + jmax = imaxjmax is the total of unknowns that should be computed. Consider the situation in (i, j) by a node identification, nmax = (i − 1)jmax + j.. To find the values of constants a(n, 1), a(n, 2) ... a(n, n), ..., a(n, nmax + 1), the equation corresponded to the node n could be found as:

$$a\left(n,1\right)\dot{u}(1)+a\left(n,2\right)\dot{u}(2)+\cdots +a\left(n,n\right)\dot{u}(n)+a\left(n,n+1\right)\dot{u}\left(n+1\right)+\cdots =a\left(n,{n}_{\textrm{max}}+1\right)$$
(A8)

with the aid of the last results and recalling Eq. (A2) one can write:

$$\dot{u}\left(i+1,j\right)-\dot{u}\left(i,j\right)=\sum \limits_{m=1}^ja\left(m,j\right)\left[\dot{u}\left(m,j-1\right)-2\dot{u}\left(m,j\right)+\dot{u}\left(m,j+1\right)\right]$$
(A9)

where:

$$a\left(m,j\right)=\alpha (z)\frac{\left(m-1\right){\left(\varDelta z\right)}^2}{{\left(\varDelta t\right)}^2}=\frac{\gamma \left(m-1\right){\left(\varDelta z\right)}^2}{gG^{\textrm{ep}}(z){\left(\varDelta t\right)}^2}$$
(A10)

and the nodal number assigned to the point (m, j) is s = (m − 1)jmax + j.. The node directly below the (m, j) will have a nodal number of r = mjmax + j.. It remains to express Eq. (A10) in a form suitable for coding. That is, to reduce it to several simultaneous algebraic equations. Thus Eq. (A10) can be rewritten as:

$$\dot{u}(r)-\dot{u}(n)=\sum \limits_{s=1}^n\alpha (s)\left[\dot{u}\left(s-1\right)-2\dot{u}(s)+\dot{u}\left(s+1\right)\right]$$
(A11)

The scheme is fully explicit. Equation (A11) must be computed subject to the appropriate boundary conditions as:

$$z=z\to \dot{u}={a}_0\omega \cos \left(\omega t\right)@\left|\begin{array}{c}t=0\to \dot{u}=0,\sigma =\gamma z\\ {}z=0\to \dot{u}=0\end{array}\right.$$
(A12)

for periodic loading and ubase for dynamic loading, where a0 is the amplitude of the wave of the periodic sine function, and ω is the angular wave frequency (radians/s).

Fig. 17
figure 17

The mesh adopted in the present study to simulate the slopes

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badakhshan, E., Noorzad, A., Vaunat, J. et al. A critical-state constitutive model for considering the anisotropy in sandy slopes. Arab J Geosci 16, 144 (2023). https://doi.org/10.1007/s12517-023-11228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11228-0

Keywords

Navigation