Skip to main content
Log in

Genome-Wide Analysis of DREB Genes in Sugar Beet and Their Potential Functions in Response to Drought Stress

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugar beet (Beta vulgaris L) is an important sugar and cash crop, but its production is often severely affected by drought. Dehydration-responsive element-binding protein (DREB) family transcription factors are known to play important roles in drought tolerance. However, the sugar beet BvDREB gene family has never been reported. In this study, we identified the sugar beet BvDREB gene family at the genome-wide level and analyzed its structure and expression patterns to reveal the biological functions of these genes in response to drought stress. Thirty BvDREB genes were identified and divided into six subfamilies. A comprehensive analysis of the evolutionary tree, cis-acting elements, drought stress transcriptome data, real-time quantitative PCR results and potential interacting proteins of BvDREB revealed that all the BvDREB genes are responsive to drought stress and have different expression patterns under short- and long-term drought stress conditions. They play an important role in drought tolerance through regulating the ABA signal pathway, proline biosynthesis and hormone levels. This study provides important data for further functional characterization of the BvDREB genes and also lays the foundation for molecular screening and breeding of drought tolerance in sugar beet and other crop varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ain-Ali, Q.U., N. Mushtaq, R. Amir, A. Gul, M. Tahir, and F. Munir. 2021. Genome-wide promoter analysis, homology modeling and protein interaction network of dehydration responsive element binding (DREB) gene family in Solanum tuberosum. PLoS ONE 16: e0261215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Augustine, S.A., J.A. Narayan, D.P. Syamaladevi, C.A.M. Chakravarthi, V. Ravichandran, and N. Subramonian. 2015. Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). The Plant Cell 2: 247–263.

    Article  Google Scholar 

  • Bailey, T.L., J. Johnson, C.E. Grant, and W.S. Noble. 2015. The MEME suite. Nucleic Acids Research 43: W39-49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Begum, N., M.A. Ahanger, Y. Su, Y. Lei, N.S.A. Mustafa, P. Ahmad, and L. Zhang. 2019. Improved drought tolerance by AMF inoculation in Maize (Zea mays) involves physiological and biochemical implications. Plants (Basel) 8: 579.

    Article  PubMed  CAS  Google Scholar 

  • Cervela-Cardona, L., T. Yoshida, Y. Zhang, M. Okada, A. Fernie, and P. Mas. 2021. Circadian control of metabolism by the clock component TOC1. Frontiers in Plant Science 12: 683516.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charfeddine, M., M.N. Saïdi, S. Charfeddine, A. Hammami, and R. Gargouri Bouzid. 2015. Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L.). Molecular Biotechnology 57: 348–358.

    Article  CAS  Google Scholar 

  • Chen, C., H. Chen, Y. Zhang, H.R. Thomas, M.H. Frank, Y. He, and R. Xia. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13: 1194–1202.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., L. Liu, L. Wang, S. Wang, and X. Cheng. 2016. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. Journal of Plant Research 129: 263–273.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., Q.Y. Wang, X.G. Cheng, Z.S. Xu, L.C. Li, X.G. Ye, L.Q. Xia, and Y.Z. Ma. 2007. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communication 353: 299–305.

    Article  CAS  Google Scholar 

  • Chen, M., Z. Xu, L. Xia, L. Li, X. Cheng, J. Dong, Q. Wang, and Y. Ma. 2009. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). Journal of Experimental Botany 60: 121–135.

    Article  PubMed  CAS  Google Scholar 

  • Dietz, K.J., M.O. Vogel, and A. Viehhauser. 2010. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245: 3–14.

    Article  PubMed  CAS  Google Scholar 

  • Dong, C.J., and J.Y. Liu. 2010. The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biology 10: 47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dossa, K., X. Wei, D. Li, D. Fonceka, Y. Zhang, L. Wang, J. Yu, L. Boshou, D. Diouf, N. Cissé, and X. Zhang. 2016. Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biology 16: 171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubouzet, J.G., Y. Sakuma, Y. Ito, M. Kasuga, E.G. Dubouzet, S. Miura, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2003. OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal 33: 751–763.

    Article  CAS  Google Scholar 

  • Fang, Y., and L. Xiong. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72: 673–689.

    Article  PubMed  CAS  Google Scholar 

  • Ghoulam, C., A. Foursy, and K. Fares. 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany 47: 39–50.

    Article  CAS  Google Scholar 

  • Gong, Y., X. Liu, S. Chen, H. Li, and H. Duanmu. 2022. Genome-Wide identification and salt stress response analysis of the bZIP transcription factor family in sugarbeet. International Journal of Molecular Sciences 23: 11573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong, Z., L. Xiong, H. Shi, S. Yang, L.R. Herrera-Estrella, G. Xu, D.Y. Chao, J. Li, P.Y. Wang, F. Qin, J. Li, Y. Ding, Y. Shi, Y. Wang, Y. Yang, Y. Guo, and J.K. Zhu. 2020. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences 63: 635–674.

    Article  PubMed  Google Scholar 

  • Griffiths, H., and M.A. Parry. 2002. Plant responses to water stress. Annals of Botany 89: 801–802.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruska, R.M., A. Baryga, A.K. Styczyńska, S. Brzeziński, J.R. Kaczmarek, K. Miśkiewicz, and T. Sumińska. 2022. Fresh and stored sugar beet roots as a source of various types of mono- and oligosaccharides. Molecules 16: 5125.

    Article  Google Scholar 

  • Hosseini, S.A., E. Réthoré, S. Pluchon, N. Ali, B. Billiot, and J.C. Yvin. 2019. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences 20: 3777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou, Z., Y. Li, Y. Cheng, W. Li, T. Li, H. Du, F. Kong, L. Dong, D. Zheng, N. Feng, B. Liu, and Q. Cheng. 2022. Genome-wide analysis of DREB genes identifies a novel salt tolerance gene in wild soybean (Glycine soja). Frontiers in Plant Science 13: 821647.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, B., J. Jin, A.Y. Guo, H. Zhang, J. Luo, and G. Gao. 2015. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 31: 1296–1297.

    Article  PubMed  Google Scholar 

  • Huang, X., X. Song, R. Chen, B. Zhang, C. Li, Y. Liang, L. Qiu, Y. Fan, Z. Zhou, H. Zhou, P. Lakshmanan, Y. Li, and J. Wu. 2019. Genome-wide analysis of the DREB subfamily in Saccharum spontaneum reveals their functional divergence during cold and drought stresses. Frontiers in Genetics 10: 1326.

    Article  PubMed  CAS  Google Scholar 

  • Islam, M.J., M.J. Uddin, M.A. Hossain, R. Henry, M.K. Begum, M.A.T. Sohel, M.A. Mou, J. Ahn, E.J. Cheong, and Y.S. Lim. 2022. Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (Beta vulgaris L.). PLoS ONE 17: e0262099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Izadi-Darbandi, A., H. Alameldin, N. Namjoo, and K. Ahmad. 2023. Introducing sorghum DREB2 gene in maize (Zea mays L.) to improve drought and salinity tolerance. Biotechnology and Applied Biochemistry 4: 1480–1488.

    Article  Google Scholar 

  • Kaneko, I., S. Iwanaga, T. Kato, I. Kobayashi, and M. Yuda. 2015. Genome-wide identification of the target genes of AP2-O, a plasmodium AP2-family transcription factor. PLoS Pathogens 11: e1004905.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17: 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Kudo, M., S. Kidokoro, T. Yoshida, J. Mizoi, D. Todaka, A.R. Fernie, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2017. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnology Journal 15: 458–471.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Legnaioli, T., and J. Cuevas abd P. Mas. 2009. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO Journal 23: 3745–13757.

    Article  Google Scholar 

  • Lescot, M., P. Déhais, G. Thijs, K. Marchal, Y. Moreau, Y. Van de Peer, P. Rouzé, and S. Rombauts. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30: 325–327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Letunic, I., and P. Bork. 2021. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49: W293-w296.

    Article  CAS  Google Scholar 

  • Li, X., Y. Liang, B. Gao, M. Mijiti, T.A. Bozorov, H. Yang, D. Zhang, and A.J. Wood. 2019. ScDREB10, an A-5c type of DREB gene of the desert moss Syntrichia caninervis, confers osmotic and salt tolerances to Arabidopsis. Genes (basel) 2: 146.

    Article  Google Scholar 

  • Li, X., D. Zhang, H. Li, Y. Wang, Y. Zhang, and A.J. Wood. 2014. EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biology 14: 44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Z., G. Wang, X. Liu, Z. Wang, M. Zhang, and J. Zhang. 2021. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum. BMC Genomics 22: 456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang, Y., X. Li, D. Zhang, B. Gao, H. Yang, Y. Wang, K. Guan, and A.J. Wood. 2017. ScDREB8, a novel A-5 type of DREB gene in the desert moss syntrichia caninervis, confers salt tolerance to Arabidopsis. Plant Physiology and Biochemistry 120: 242–251.

    Article  PubMed  CAS  Google Scholar 

  • Licausi, F., F.M. Giorgi, S. Zenoni, F. Osti, M. Pezzotti, and P. Perata. 2010. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11: 719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin, R.C., H.J. Park, and H.Y. Wang. 2008. Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance. Molecular Plant 1: 42–57.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., X. Zhu, W. Liu, K. Qi, Z. Xie, S. Zhang, J. Wu, and P. Wang. 2023. Characterization of the REVEILLE family in rosaceae and role of PbLHY in flowering time regulation. BMC Genomics 24: 49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maqsood, H., F. Munir, R. Amir, and A. Gul. 2022. Genome-wide identification, comprehensive characterization of transcription factors, cis-regulatory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. Frontiers in Plant Science 13: 1031679.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michelmore, R.W., and B.C. Meyers. 1998. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Research 8: 1113–1130.

    Article  PubMed  CAS  Google Scholar 

  • Mondal, S., K.A. Mishra, R. Leung, and B. Cook. 2023. Global droughts connected by linkages between drought hubs. Nature Communication 14: 144.

    Article  CAS  Google Scholar 

  • Mondragon-Palomino, M., and B.S. Gaut. 2005. Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Molecular Biology and Evolution 22: 2444–2456.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, T., K. Suzuki, T. Fujimura, and H. Shinshi. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140: 411–432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu, X., T. Helentjaris, and N.J. Bate. 2002. Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. The Plant Cell 14: 2565–2575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Novillo, F., J.M. Alonso, J.R. Ecker, and J. Salinas. 2004. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 101: 3985–3990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozturk, M., B. Turkyilmaz Unal, P. García-Caparrós, A. Khursheed, A. Gul, and M. Hasanuzzaman. 2021. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum 172: 1321–1335.

    Article  PubMed  CAS  Google Scholar 

  • Parniske, M., K.E. Hammond-Kosack, C. Golstein, C.M. Thomas, D.A. Jones, K. Harrison, B.B. Wulff, and J.D. Jones. 1997. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91: 821–832.

    Article  PubMed  CAS  Google Scholar 

  • Rao, G., J. Sui, Y. Zeng, C. He, and J. Zhang. 2015. Genome-wide analysis of the AP2/ERF gene family in Salix arbutifolia. FEBS Open Bio 5: 132–137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren, X.Y., O. Vorst, M.W. Fiers, W.J. Stiekema, and J.P. Nap. 2006. In plants, highly expressed genes are the least compact. Trends in Genetics 22: 528–532.

    Article  PubMed  CAS  Google Scholar 

  • Ritonga, F.N., J.N. Ngatia, Y. Wang, M.A. Khoso, U. Farooq, and S. Chen. 2021. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. Physiology and Molecular Biology of Plants 27: 1953–1968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rushton, P.J., and I.E. Somssich. 1998. Transcriptional control of plant genes responsive to pathogens. Current Opinion in Plant Biology 4: 311–315.

    Article  Google Scholar 

  • Sakuma, Y., Q. Liu, J.G. Dubouzet, H. Abe, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290: 998–1009.

    Article  PubMed  CAS  Google Scholar 

  • Scandola, S., D. Mehta, Q. Li, M.C. Rodriguez Gallo, B. Castillo, and R.G. Uhrig. 2022. Multi-omic analysis shows REVEILLE clock genes are involved in carbohydrate metabolism and proteasome function. Plant Physiology 190: 1005–1023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sehrish, S., W. Sumbal, M. Xie, C. Zhao, R. Zuo, F. Gao, and S. Liu. 2022. Genome-wide identification and characterization of SET domain family genes in Brassica napus L. International Journal of Molecular Sciences 23: 1936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shavrukov, Y., M. Baho, S. Lopato, and P. Langridge. 2016. The TaDREB3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. Plant Biotechnology Journal 14: 313–322.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., E. Zhao, R. Liu, and X. Yang. 2022. Transcriptome analysis of eggplant under salt stress: AP2/ERF transcription factor SmERF1 acts as a positive regulator of salt stress. Plants (Basel) 11: 2205.

    Article  PubMed  CAS  Google Scholar 

  • Smita, S., A. Katiyar, V. Chinnusamy, D.M. Pandey, and K.C. Bansal. 2015. Transcriptional regulatory network analysis of MYB transcription factor family genes in Rice. Frontiers in Plant Science 6: 1157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza, G.B., T.A.O. Mendes, P.P. Fontes, V.A. Barros, A.B. Gonçalves, T.F. Ferreira, M.D.L. Costa, M.S. Alves, and L.G. Fietto. 2019. Genome-wide identification and expression analysis of dormancy-associated gene 1/auxin repressed protein (DRM1/ARP) gene family in Glycine max. Progress in Biophysics and Molecular Biology 146: 134–141.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S., J.P. Yu, F. Chen, T.J. Zhao, X.H. Fang, Y.Q. Li, and S.F. Sui. 2008. TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. Journal of Biological Chemistry 283: 6261–6271.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., J. Zhuang, Z. Zou, Q. Li, H. Xin, and X. Li. 2017. Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana. Journal of Plant Biology 60: 452–461.

    Article  CAS  Google Scholar 

  • Wang, Y., H. Tang, J.D. Debarry, X. Tan, J. Li, X. Wang, T.H. Lee, H. Jin, B. Marler, H. Guo, J.C. Kissinger, and A.H. Paterson. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40: e49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei, T., K. Deng, Q. Zhang, Y. Gao, Y. Liu, M. Yang, L. Zhang, X. Zheng, C. Wang, Z. Liu, C. Chen, and Y. Zhang. 2017. Modulating AtDREB1C expression improves drought tolerance in Salvia miltiorrhiza. Frontiers in Plant Science 8: 52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., L. Zhang, L. Nie, Y. Zheng, S. Zhu, J. Hou, R. Li, G. Chen, X. Tang, C. Wang, and L. Yuan. 2022. Genome-wide analysis of the DREB family genes and functional identification of the involvement of BrDREB2B in abiotic stress in wucai (Brassica campestris L.). BMC Genomics 23: 598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie, Z., C. Yang, S. Liu, M. Li, L. Gu, X. Peng, and Z. Zhang. 2022. Identification of AP2/ERF transcription factors in Tetrastigma hemsleyanum revealed the specific roles of ERF46 under cold stress. Frontiers in Plant Science 13: 936602.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, D., R. Ni, S. Yang, Y. Pu, M. Qian, Y. Yang, and Y. Yang. 2021. Functional characterization of the Stipa purpurea P5CS gene under drought stress conditions. International Journal of Molecular Sciences 22: 9599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zandkarimi, H., A. Ebadi, S.A. Salami, H. Alizade, and N. Baisakh. 2015. Analyzing the expression profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in Grape (Vitis vinifera L.). PLoS ONE 10: e0134288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng, D., J.A. Teixeira da Silva, M. Zhang, Z. Yu, C. Si, C. Zhao, G. Dai, C. He, and J. Duan. 2021. Genome-wide identification and analysis of the APETALA2 (AP2) transcription factor in Dendrobium officinale. International Journal of Molecular Sciences 22: 5221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, W., Q. Yuan, Y. Wu, J. Zhang, and J. Nie. 2022. Genome-Wide identification and characterization of the CC-NBS-LRR gene family in Cucumber (Cucumis sativus L.). International Journal of Molecular Sciences 23: 5048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Z., W. Li, X. Gao, M. Xu, and Y. Guo. 2020. DEAR4, a member of DREB/CBF family, positively regulates leaf senescence and response to multiple stressors in Arabidopsis thaliana. Frontiers in Plant Science 11: 367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, Q., R.S. Hu, D. Liu, X. Liu, J. Wang, X.H. Xiang, and Y.Y. Li. 2020. The AP2 transcription factor NtERF172 confers drought resistance by modifying NtCAT. Plant Biotechnology Journal 18: 2444–2455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53: 247–273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuang, J., B. Cai, R.H. Peng, B. Zhu, X.F. Jin, Y. Xue, F. Gao, X.Y. Fu, Y.S. Tian, W. Zhao, Y.S. Qiao, Z. Zhang, A.S. Xiong, and Q.H. Yao. 2008. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochemical and Biophysical Research Communications 371: 468–474.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (32272058), International Cooperation and Exchange of the National Natural Science Foundation of China (32261133530), China Postdoctoral Science Foundation (2019M651315) and partly by a new Faculty startup fund from the University of Mississippi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunquan Ma or Bing Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 262 kb)

Supplementary file2 (PNG 163 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Li, H., Song, Y. et al. Genome-Wide Analysis of DREB Genes in Sugar Beet and Their Potential Functions in Response to Drought Stress. Sugar Tech (2024). https://doi.org/10.1007/s12355-023-01337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12355-023-01337-1

Keywords

Navigation