Skip to main content

Advertisement

Log in

Deep-learning-based methods of attenuation correction for SPECT and PET

  • Theme Articles
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Attenuation correction (AC) is essential for quantitative analysis and clinical diagnosis of single-photon emission computed tomography (SPECT) and positron emission tomography (PET). In clinical practice, computed tomography (CT) is utilized to generate attenuation maps (μ-maps) for AC of hybrid SPECT/CT and PET/CT scanners. However, CT-based AC methods frequently produce artifacts due to CT artifacts and misregistration of SPECT-CT and PET-CT scans. Segmentation-based AC methods using magnetic resonance imaging (MRI) for PET/MRI scanners are inaccurate and complicated since MRI does not contain direct information of photon attenuation. Computational AC methods for SPECT and PET estimate attenuation coefficients directly from raw emission data, but suffer from low accuracy, cross-talk artifacts, high computational complexity, and high noise level. The recently evolving deep-learning-based methods have shown promising results in AC of SPECT and PET, which can be generally divided into two categories: indirect and direct strategies. Indirect AC strategies apply neural networks to transform emission, transmission, or MR images into synthetic μ-maps or CT images which are then incorporated into AC reconstruction. Direct AC strategies skip the intermediate steps of generating μ-maps or CT images and predict AC SPECT or PET images from non-attenuation-correction (NAC) SPECT or PET images directly. These deep-learning-based AC methods show comparable and even superior performance to non-deep-learning methods. In this article, we first discussed the principles and limitations of non-deep-learning AC methods, and then reviewed the status and prospects of deep-learning-based methods for AC of SPECT and PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Adapted with permission from Ref 47

Figure 2

Adapted with permission from Ref. 47

Figure 3

Adapted with permission from Ref. 52

Figure 4

Adapted with permission from Ref. 50

Figure 5

Adapted with permission from Ref. 16

Figure 6

Adapted with permission from Ref. 16

Figure 7

Adapted with permission from Ref. 45

Figure 8

Adapted with permission from Ref. 46. Reproduced by permission of IOP Publishing. All rights reserved

Figure 9

Adapted with permission from Ref. 88.

Figure 10

Reproduced by permission of IOP Publishing. All rights reserved)

Similar content being viewed by others

Abbreviations

TOF:

Time of flight

MPI:

Myocardial perfusion imaging

UTE:

Ultra-short echo time

ZTE:

Zero echo time

AC:

Attenuation correction

ASC:

Attenuation- and scatter-correction

NAC:

Non-attenuation-correction

μ-Map:

Attenuation map

MLAA:

Maximum-likelihood reconstruction of activity and attenuation

FOV:

Field of view

References

  1. Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol 2017;2:1100‐7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Acampa W, Gaemperli O, Gimelli A, Knaapen P, Schindler TH, Verberne HJ, et al. Role of risk stratification by SPECT, PET, and hybrid imaging in guiding management of stable patients with ischaemic heart disease: Expert Panel of the EANM Cardiovascular Committee and EACVI. Eur Heart J Cardiovasc Imaging 2015;16:1289‐98.

    Article  PubMed  Google Scholar 

  3. Uematsu T, Yuen S, Yukisawa S, Aramaki T, Morimoto N, Endo M, et al. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. Am J Roentgenol 2005;184:1266‐73.

    Article  Google Scholar 

  4. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006;47:287‐97.

    PubMed  Google Scholar 

  5. Zhu L, Ploessl K, Kung HF. PET/SPECT imaging agents for neurodegenerative diseases. Chem Soc Rev 2014;43:6683‐91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu F-M, Yuan Z. PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases. Quant Imaging Med Surg 2015;5:433.

    PubMed  PubMed Central  Google Scholar 

  7. Burger C, Goerres G, Schoenes S, Buck A, Lonn A, Von Schulthess G. PET attenuation coefficients from CT images: Experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002;29:922‐7.

    Article  CAS  PubMed  Google Scholar 

  8. Garcia EV. SPECT attenuation correction: An essential tool to realize nuclear cardiology’s manifest destiny. J Nucl Cardiol 2007;14:16‐24.

    Article  PubMed  Google Scholar 

  9. Lee TC, Alessio AM, Miyaoka RM, Kinahan PE. Morphology supporting function: Attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging. Q J Nucl Med Mol Imaging Off Publ Ital Assoc Nucl Med Int Assoc Radiopharmacol Sect Soc 2016;60:25.

    Google Scholar 

  10. Lee JS. A review of deep-learning-based approaches for attenuation correction in positron emission tomography. IEEE Trans Radiat Plasma Med Sci 2020;5:160‐84.

    Article  Google Scholar 

  11. Patton JA, Turkington TG. SPECT/CT physical principles and attenuation correction. J Nucl Med Technol 2008;36:1‐10.

    Article  PubMed  Google Scholar 

  12. Blankespoor S, Xu X, Kaiki K, Brown J, Tang H, Cann C, et al. Attenuation correction of SPECT using X-ray CT on an emission–transmission CT system: Myocardial perfusion assessment. IEEE Trans Nucl Sci 1996;43:2263‐74.

    Article  Google Scholar 

  13. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 2003;33:166‐79.

    Article  PubMed  Google Scholar 

  14. Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med 2003;44:291‐315.

    PubMed  Google Scholar 

  15. Rahman MA, Zhu Y, Clarkson E, Kupinski MA, Frey EC, Jha AK. Fisher information analysis of list-mode SPECT emission data for joint estimation of activity and attenuation distribution. Inverse Probl 2020;36:084002.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Zhou B, Xie H, Shi L, Liu H, Holler W, et al. Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT. Eur J Nucl Med Mol Imaging 2022. https://doi.org/10.1007/s00259-022-05718-8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barrett JF, Keat N. Artifacts in CT: Recognition and avoidance. Radiographics 2004;24:1679‐91.

    Article  PubMed  Google Scholar 

  18. Boas FE, Fleischmann D. CT artifacts: Causes and reduction techniques. Imaging Med 2012;4:229‐40.

    Article  Google Scholar 

  19. Goetze S, Brown TL, Lavely WC, Zhang Z, Bengel FM. Attenuation correction in myocardial perfusion SPECT/CT: Effects of misregistration and value of reregistration. J Nucl Med 2007;48:1090‐5.

    Article  PubMed  Google Scholar 

  20. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: A definitive analysis of causes, consequences, and corrections. J Nucl Med 2007;48:1112‐21.

    Article  PubMed  Google Scholar 

  21. Martinez-Möller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: Frequency, effects, and potential solutions. J Nucl Med 2007;48:188‐93.

    PubMed  Google Scholar 

  22. Bockisch A, Freudenberg LS, Schmidt D, Kuwert T. Hybrid imaging by SPECT/CT and PET/CT: Proven outcomes in cancer imaging. Semin Nucl Med 2009;39:276‐89.

    Article  PubMed  Google Scholar 

  23. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 2005;46:608‐13.

    CAS  PubMed  Google Scholar 

  24. Larkin AM, Serulle Y, Wagner S, Noz ME, Friedman K. Quantifying the increase in radiation exposure associated with SPECT/CT compared to SPECT alone for routine nuclear medicine examinations. Int J Mol Imaging 2011;2011:897202.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vandenberghe S, Marsden PK. PET–MRI: A review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 2015;60:R115.

    Article  PubMed  Google Scholar 

  26. Arabi H, Zaidi H. Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal 2016;31:1‐15.

    Article  PubMed  Google Scholar 

  27. Chen Y, An H. Attenuation correction of PET/MR imaging. Magn Reson Imaging Clin 2017;25:245‐55.

    Article  Google Scholar 

  28. Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, et al. MRI-based attenuation correction for hybrid PET/MRI systems: A 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 2012;53:796‐804.

    Article  PubMed  Google Scholar 

  29. Cabello J, Lukas M, Förster S, Pyka T, Nekolla SG, Ziegler SI. MR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients. J Nucl Med 2015;56:423‐9.

    Article  PubMed  Google Scholar 

  30. Wang G, Ye JC, Mueller K, Fessler JA. Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 2018;37:1289‐96.

    Article  PubMed  Google Scholar 

  31. Xie H, Shan H, Cong W, Liu C, Zhang X, Liu S, et al. Deep efficient end-to-end reconstruction (DEER) network for few-view breast CT image reconstruction. IEEE Access 2020;8:196633‐46.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhou B, Liu C, Duncan JS. Anatomy-constrained contrastive learning for synthetic segmentation without ground-truth. In: International conference on medical image computing and computer-assisted intervention, 2021. p. 47-56.

  33. Zhou B, Chen X, Zhou SK, Duncan JS, Liu C. DuDoDR-Net: Dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography. Med Image Anal 2022;75:102289.

    Article  PubMed  Google Scholar 

  34. Guo Z, Li X, Huang H, Guo N, Li Q. Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans Radiat Plasma Med Sci 2019;3:162‐9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhou B, Tsai Y-J, Chen X, Duncan JS, Liu C. MDPET: A unified motion correction and denoising adversarial network for low-dose gated PET. IEEE Trans Med Imaging 2021;40:3154‐64.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hashimoto F, Ohba H, Ote K, Teramoto A, Tsukada H. Dynamic PET image denoising using deep convolutional neural networks without prior training datasets. IEEE Access 2019;7:96594‐603.

    Article  Google Scholar 

  37. Chen M, Shi X, Zhang Y, Wu D, Guizani M. Deep feature learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans Big Data 2017;7:750‐8.

    Article  Google Scholar 

  38. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, 2015. p. 234-41.

  39. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Advances in neural information processing systems, 2014. p. 27.

  40. Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, 2017. p. 2223-32.

  41. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017. p. 4700-8.

  42. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018. p. 7132-41.

  43. Targ S, Almeida D, Lyman K. Resnet in ResNet: Generalizing residual architectures, 2016. arXiv preprint arXiv: 160308029.

  44. McMillan AB, Bradshaw TJ. Artificial intelligence-based data corrections for attenuation and scatter in position emission tomography and single-photon emission computed tomography. PET Clin 2021;16:543‐52.

    Article  PubMed  Google Scholar 

  45. Bradshaw TJ, Zhao G, Jang H, Liu F, McMillan AB. Feasibility of deep learning-based PET/MR attenuation correction in the pelvis using only diagnostic MR images. Tomography 2018;4:138‐47.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol 2019;64:215016.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shi L, Onofrey JA, Liu H, Liu Y-H, Liu C. Deep learning-based attenuation map generation for myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2020;47:2383‐95.

    Article  PubMed  Google Scholar 

  48. Choi B-H, Hwang D, Kang S-K, Kim K-Y, Choi H, Seo S, et al. Accurate transmission-less attenuation correction method for amyloid-β brain PET using deep neural network. Electronics 2021;10:1836.

    Article  CAS  Google Scholar 

  49. Hwang D, Kang SK, Kim KY, Choi H, Lee JS. Comparison of deep learning-based emission-only attenuation correction methods for positron emission tomography. Eur J Nucl Med Mol Imaging 2021;49:1‐10.

    Google Scholar 

  50. Chen X, Zhou B, Shi L, Liu H, Pang Y, Wang R, et al. CT-free attenuation correction for dedicated cardiac SPECT using a 3D dual squeeze-and-excitation residual dense network. J Nucl Cardiol 2021. https://doi.org/10.1007/s12350-021-02672-0.

    Article  PubMed  Google Scholar 

  51. Torkaman M, Yang J, Shi L, Wang R, Miller EJ, Sinusas AJ, et al. Direct image-based attenuation correction using conditional generative adversarial network for SPECT myocardial perfusion imaging. In: Medical imaging 2021: biomedical applications in molecular, structural, and functional imaging, 2021. p. 116000U.

  52. Yang J, Shi L, Wang R, Miller EJ, Sinusas AJ, Liu C, et al. Direct attenuation correction using deep learning for cardiac SPECT: A feasibility study. J Nucl Med 2021;62:1645‐52.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shiri I, Arabi H, Geramifar P, Hajianfar G, Ghafarian P, Rahmim A, et al. Deep-JASC: Joint attenuation and scatter correction in whole-body 18F-FDG PET using a deep residual network. Eur J Nucl Med Mol Imaging 2020;47:2533‐48.

    Article  PubMed  Google Scholar 

  54. Mostafapour S, Gholamiankhah F, Dadgar H, Arabi H, Zaidi H. Feasibility of deep learning-guided attenuation and scatter correction of whole-body 68Ga-PSMA PET studies in the image domain. Clin Nucl Med 2021;46:609‐15.

    Article  PubMed  Google Scholar 

  55. Pan T-S, King MA, De Vries DJ, Ljungberg M. Segmentation of the body and lungs from Compton scatter and photopeak window data in SPECT: A Monte-Carlo investigation. IEEE Trans Med Imaging 1996;15:13‐24.

    Article  CAS  PubMed  Google Scholar 

  56. Pan T-S, King MA, Luo D-S, Dahlberg ST, Villegas BJ. Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol 1997;4:42‐51.

    Article  CAS  PubMed  Google Scholar 

  57. Hosoba M, Wani H, Toyama H, Murata H, Tanaka E. Automated body contour detection in SPECT: Effects on quantitative studies. J Nucl Med 1986;27:1184‐91.

    CAS  PubMed  Google Scholar 

  58. Ben Younes R, Mas J, Bidet R. A fully automated contour detection algorithm the preliminary step for scatter and attenuation compensation in SPECT. Eur J Nucl Med 1988;14:586‐9.

    Article  CAS  PubMed  Google Scholar 

  59. Hebert TJ, Gopal S, Murphy P. A fully automated optimization algorithm for determining the 3-D patient contour from photo-peak projection data in SPECT. IEEE Trans Med Imaging 1995;14:122‐31.

    Article  CAS  PubMed  Google Scholar 

  60. Censor Y, Gustafson DE, Lent A, Tuy H. A new approach to the emission computerized tomography problem: Simultaneous calculation of attenuation and activity coefficients. IEEE Trans Nucl Sci 1979;26:2775‐9.

    Article  Google Scholar 

  61. Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging 1999;18:393‐403.

    Article  CAS  PubMed  Google Scholar 

  62. Krol A, Bowsher JE, Manglos SH, Feiglin DH, Tornai MP, Thomas FD. An EM algorithm for estimating SPECT emission and transmission parameters from emission data only. IEEE Trans Med Imaging 2001;20:218‐32.

    Article  CAS  PubMed  Google Scholar 

  63. Bronnikov AV. Reconstruction of attenuation map using discrete consistency conditions. IEEE Trans Med Imaging 2000;19:451‐62.

    Article  CAS  PubMed  Google Scholar 

  64. Gourion D, Noll D, Gantet P, Celler A, Esquerré J-P. Attenuation correction using SPECT emission data only. IEEE Trans Nucl Sci 2002;49:2172‐9.

    Article  Google Scholar 

  65. Yan Y, Zeng GL. Attenuation map estimation with SPECT emission data only. Int J Imaging Syst Technol 2009;19:271‐6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chen Y, Goorden MC, Beekman FJ. Automatic attenuation map estimation from SPECT data only for brain perfusion scans using convolutional neural networks. Phys Med Biol 2021;66:065006.

    Article  PubMed  Google Scholar 

  67. Chen Y, Goorden MC, Beekman FJ. Convolutional neural network based attenuation correction for 123I-FP-CIT SPECT with focused striatum imaging. Phys Med Biol 2021;66:195007.

    Article  CAS  Google Scholar 

  68. Liu H, Wu J, Shi L, Liu Y, Miller E, Sinusas A, et al. Post-reconstruction attenuation correction for SPECT myocardium perfusion imaging facilitated by deep learning-based attenuation map generation. J Nucl Cardiol 2021. https://doi.org/10.1007/s12350-021-02817-1.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yu Z, Rahman MA, Schindler T, Laforest R, Jha AK. A physics and learning-based transmission-less attenuation compensation method for SPECT. In: Medical imaging 2021: physics of medical imaging, 2021. p. 1159512.

  70. Torrey L, Shavlik J. Transfer learning. In: Handbook of research on machine learning applications and trends: Algorithms, methods, and techniques. Hershey: IGI Global; 2010. p. 242-64.

  71. Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35:1285‐98.

    Article  PubMed  Google Scholar 

  72. Chen X, Hendrik Pretorius P, Zhou B, Liu H, Johnson K, Liu Y-H, et al. Cross-vender, cross-tracer, and cross-protocol deep transfer learning for attenuation map generation of cardiac SPECT. J Nucl Cardiol 2022. https://doi.org/10.1007/s12350-022-02978-7.

    Article  PubMed  Google Scholar 

  73. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. J Nucl Med 2011;52:210‐7.

    Article  PubMed  Google Scholar 

  74. Xu EZ, Mullani NA, Gould KL, Anderson WL. A segmented attenuation correction for PET. J Nucl Med 1991;32:161‐5.

    CAS  PubMed  Google Scholar 

  75. Sekine T, Buck A, Delso G, Ter Voert EE, Huellner M, Veit-Haibach P, et al. Evaluation of atlas-based attenuation correction for integrated PET/MR in human brain: Application of a head atlas and comparison to true CT-based attenuation correction. J Nucl Med 2016;57:215‐20.

    Article  CAS  PubMed  Google Scholar 

  76. Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging 2012;31:2224‐33.

    Article  PubMed  Google Scholar 

  77. Rezaei A, Defrise M, Nuyts J. ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. IEEE Trans Med Imaging 2014;33:1563‐72.

    Article  PubMed  Google Scholar 

  78. Rezaei A, Michel C, Casey ME, Nuyts J. Simultaneous reconstruction of the activity image and registration of the CT image in TOF-PET. Phys Med Biol 2016;61:1852.

    Article  PubMed  Google Scholar 

  79. Gong K, Yang J, Kim K, El Fakhri G, Seo Y, Li Q. Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images. Phys Med Biol 2018;63:125011.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jang H, Liu F, Zhao G, Bradshaw T, McMillan AB. Deep learning based MRAC using rapid ultrashort echo time imaging. Med Phys 2018;45:3697‐704.

    Article  Google Scholar 

  81. Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology 2018;286:676‐84.

    Article  PubMed  Google Scholar 

  82. Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI. Eur J Nucl Med Mol Imaging 2019;46:2746‐59.

    Article  PubMed  Google Scholar 

  83. Blanc-Durand P, Khalifé M, Sgard B, Kaushik S, Soret M, Tiss A, et al. Attenuation correction using 3D deep convolutional neural network for brain 18F-FDG PET/MR: Comparison with Atlas, ZTE and CT based attenuation correction. PLoS ONE 2019;14:e0223141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu F, Jang H, Kijowski R, Zhao G, Bradshaw T, McMillan AB. A deep learning approach for 18F-FDG PET attenuation correction. EJNMMI Phys 2018;5:1‐15.

    Article  Google Scholar 

  85. Reimold M, Nikolaou K, Christian La Fougère M, Gatidis S. 18 Independent brain F-FDG PET attenuation correction using a deep learning approach with Generative Adversarial Networks. Hell J Nucl Med 2019;22:179‐86.

    PubMed  Google Scholar 

  86. Armanious K, Hepp T, Küstner T, Dittmann H, Nikolaou K, La Fougère C, et al. Independent attenuation correction of whole body [18F] FDG-PET using a deep learning approach with Generative Adversarial Networks. EJNMMI Res 2020;10:1‐9.

    Article  Google Scholar 

  87. Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med 2018;59:1624‐9.

    Article  CAS  PubMed  Google Scholar 

  88. Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med 2019;60:1183‐9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shi L, Onofrey JA, Revilla EM, Toyonaga T, Menard D, Ankrah J, et al. A novel loss function incorporating imaging acquisition physics for PET attenuation map generation using deep learning. In: International conference on medical image computing and computer-assisted intervention, 2019. p. 723-31.

  90. Rezaei A, Schramm G, Willekens SM, Delso G, Van Laere K, Nuyts J. A quantitative evaluation of joint activity and attenuation reconstruction in TOF PET/MR brain imaging. J Nucl Med 2019;60:1649‐55.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Shiri I, Ghafarian P, Geramifar P, Leung KH-Y, Ghelichoghli M, Oveisi M, et al. Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder–decoder (Deep-DAC). Eur Radiol 2019;29:6867‐79.

    Article  PubMed  Google Scholar 

  92. Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, et al. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol 2020;65:055011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang J, Park D, Gullberg GT, Seo Y. Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain 18F-FDG PET. Phys Med Biol 2019;64:075019.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gerlot-Chiron P, Bizais Y. Registration of multimodality medical images using a region overlap criterion. CVGIP Graph Models Image Process 1992;54:396‐406.

    Article  Google Scholar 

  95. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 1997;16:187‐98.

    Article  CAS  PubMed  Google Scholar 

  96. Hwang D, Kang SK, Kim KY, Choi H, Seo S, Lee JS. Data-driven respiratory phase-matched PET attenuation correction without CT. Phys Med Biol 2021;66:115009.

    Article  Google Scholar 

  97. Murata T, Yokota H, Yamato R, Horikoshi T, Tsuneda M, Kurosawa R, et al. Development of attenuation correction methods using deep learning in brain-perfusion single-photon emission computed tomography. Med Phys 2021;48:4177‐90.

    Article  PubMed  Google Scholar 

  98. Sakaguchi K, Kaida H, Yoshida S, Ishii K. Attenuation correction using deep learning for brain perfusion SPECT images. Ann Nucl Med 2021;35:589‐99.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures

Xiongchao Chen and Chi Liu are named inventors on non-provisional patent applications that Yale University has filed on SPECT attenuation correction. No other potential conflicts of interest relevant to this article exist.

Consent for Publication

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Liu PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

Funding

This work is supported by NIH Grants R01HL154345.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1614 kb)

Supplementary file2 (MP3 4233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, C. Deep-learning-based methods of attenuation correction for SPECT and PET. J. Nucl. Cardiol. 30, 1859–1878 (2023). https://doi.org/10.1007/s12350-022-03007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-022-03007-3

Keywords

Navigation