Skip to main content

Advertisement

Log in

Osteoporosis in Adrenal Insufficiency: Could Metformin be Protective?

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Adrenal insufficiency (AI) is a serious disorder characterized by the adrenal glucocorticoid deficiency. Regardless of the etiology, AI patients need long-term replacement therapy for glucocorticoids and, in some cases, for mineralocorticoids. The replacement therapy cannot completely mirror the physiological secretion patterns, and therefore, glucocorticoid excess is a common sequela in AI patients. Moreover, due to the absence of the reliable clinical markers to monitor the adequacy of the replacement therapy, clinicians often over-treat the AI patients to avoid adrenal crisis. Long-term glucocorticoid use is associated with the loss of bone density and osteoporosis, increasing the risk of fractures. Moreover, glucocorticoid-induced hyperglycemia and type 2 diabetes mellitus further aggravates the bone disorders. In the recent years, ameliorating effects of metformin on glucocorticoid-induced bone disorders, as well as hyperglycemia, have been reported by a multitude of studies; and here, we reviewed and discussed the most recent findings regarding the positive effects of metformin on alleviating the bone disorders, and their implications in the AI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hahner S, Ross RJ, Arlt W, Bancos I, Burger-Stritt S, Torpy DJ, et al. Adrenal insufficiency. Nat Reviews Disease Primers. 2021;7:19.

    Article  PubMed  Google Scholar 

  2. Hahner S, Ross RJ, Arlt W, Bancos I, Burger-Stritt S, Torpy DJ, et al. Adrenal insufficiency. Nat Rev Dis Primers. 2021;7:1–24.

    Article  Google Scholar 

  3. Claessen KM, Andela CD, Biermasz NR, Pereira AM. Clinical unmet needs in the treatment of adrenal crisis: importance of the patient’s perspective. Front Endocrinol. 2021;12:701365.

    Article  Google Scholar 

  4. Charmandari E, Nicolaides NC, Chrousos GP. Adrenal insufficiency. The Lancet. 2014;383:2152–67.

    Article  CAS  Google Scholar 

  5. Bornstein SR, Allolio B, Arlt W, Barthel A, Don-Wauchope A, Hammer GD, et al. Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metabolism. 2016;101:364–89.

    Article  CAS  Google Scholar 

  6. Bancos I, Hahner S, Tomlinson J, Arlt W. Diagnosis and management of adrenal insufficiency. Lancet Diabet Endocrinol. 2015;3:216–26.

    Article  Google Scholar 

  7. Hardy R, Cooper MS. Adrenal gland and bone. Arch Biochem Biophys. 2010;503:137–45.

    Article  CAS  PubMed  Google Scholar 

  8. Chiodini I, Vainicher CE, Morelli V, Palmieri S, Cairoli E, Salcuni AS, et al. Mechanisms in endocrinology: endogenous subclinical hypercortisolism and bone: a clinical review. Eur J Endocrinol. 2016;175:R265–82.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou H, Cooper MS, Seibel MJ. Endogenous glucocorticoids and bone. Bone Res. 2013;1:107–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm. 2021;15:120733.

    Article  Google Scholar 

  11. Parween S, Rihs S, Flück CE. Metformin inhibits the activation of melanocortin receptors 2 and 3 in vitro: a possible mechanism for its anti-androgenic and weight balancing effects in vivo? J Steroid Biochem Mol Biol. 2020;200:105684.

    Article  CAS  PubMed  Google Scholar 

  12. Anderson AJ, Andrew R, Homer NZ, Jones GC, Smith K, Livingstone DE, et al. Metformin increases cortisol regeneration by 11βHSD1 in obese men with and without type 2 diabetes mellitus. J Clin Endocrinol Metabol. 2016;101:3787–93.

    Article  CAS  Google Scholar 

  13. Li J-X, Cummins CL. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat Rev Endocrinol. 2022;18:540–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Janssen JA. New Insights into the role of insulin and hypothalamic-pituitary-adrenal (HPA) Axis in the metabolic syndrome. Int J Mol Sci. 2022;23:8178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo X, Liang M. Metformin alleviates dexamethasone-induced apoptosis by regulating autophagy via AMPK/mTOR/p70S6K in osteoblasts. Exp Cell Res. 2022;415:113120.

    Article  CAS  PubMed  Google Scholar 

  16. Guo H, Ding D, Wang L, Yan J, Ma L, Jin Q. Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-κB/ERK signaling pathway. PLoS ONE. 2021;16:e0261127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang X, Li S, Lu W, Xiong L. Metformin activates Wnt/β-catenin for the treatment of diabetic osteoporosis. BMC Endocr Disorders. 2022;22:189.

    Article  CAS  Google Scholar 

  18. Ma J, Zhang Z, Hu X, Wang X, Chen A. Metformin promotes differentiation of human bone marrow derived mesenchymal stem cells into osteoblast via GSK3β inhibition. Eur Rev Med Pharmacol Sci 2018; 22.

  19. Fan K-J, Wu J, Wang Q-S, Xu B-X, Zhao F-T, Wang T-Y. Metformin inhibits inflammation and bone destruction in collagen-induced arthritis in rats. Ann Transl Medi. 2020;8.

  20. Ruppert K, Cauley J, Lian Y, Zgibor JC, Derby C, Solomon D. The effect of insulin on bone mineral density among women with type 2 diabetes: a SWAN Pharmacoepidemiology study. Osteoporos Int. 2018;29:347–54.

    Article  CAS  PubMed  Google Scholar 

  21. Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J physiol-endocrinol Metab. 2005;289:E735-45.

    Article  CAS  PubMed  Google Scholar 

  22. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells Science. 1999;284:143–7.

  23. Shoiab AA, Gardouh AR. The Nephroprotective Effect of Zizphus Jujuba Extract Against 5-Flurouracil-Induced Nephropathy. Al-Kitab J Pure Sci. 2020;4(2):59–70. https://doi.org/10.32441/kjps.04.02.p6

    Article  Google Scholar 

  24. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000;289:1508–14.

    Article  CAS  PubMed  Google Scholar 

  25. Hayat S, Magrey MN. Glucocorticoid-induced osteoporosis: insights for the clinician. Cleve Clin J Med. 2020;87:417–26.

    Article  PubMed  Google Scholar 

  26. Hammarstrand C, Ragnarsson O, Hallén T, Andersson E, Skoglund T, Nilsson AG, et al. Higher glucocorticoid replacement doses are associated with increased mortality in patients with pituitary adenoma. Eur J Endocrinol. 2017;177:251–6.

    Article  CAS  PubMed  Google Scholar 

  27. Hardy RS, Zhou H, Seibel MJ, Cooper MS. Glucocorticoids and bone: consequences of endogenous and exogenous excess and replacement therapy. Endocr Rev. 2018;39:519–48.

    Article  PubMed  Google Scholar 

  28. Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.

    Article  CAS  PubMed  Google Scholar 

  29. Komori T. Glucocorticoid signaling and bone biology. Horm Metab Res. 2016;48:755–63.

    Article  CAS  PubMed  Google Scholar 

  30. Chotiyarnwong P, McCloskey EV. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Reviews Endocrinol. 2020;16:437–47.

    Article  Google Scholar 

  31. Salah DB, Boujelben K, Missaoui A, Elleuch M, Fatma M, Mnif M, et al. editors. 25-hydroxyvitamin D, parathyroid hormone and bone turnover markers in patients with addison disease. Endocrine Abstracts; 2022: Bioscientifica.

  32. Salah DB, Boujelben K, Missaoui A, Elleuch M, Fatma M, Mmnif M, et al. editors. Risk factors associated with bone loss in patients with Addison disease. Endocrine Abstracts: Bioscientifica; 2022.

    Google Scholar 

  33. Araujo BF, Lavrador M, Araujo C, Ferreira M, Barros L, editors. et al., editors. Reduced bone mineral density in primary adrenal insufficiency: consequences of long-term treatment. Endocrine Abstracts; 2022. Paiva S,.

  34. Yazidi M, Danguir C, Maamer D, Oueslati I, Khiari K, Elleuch M, et al. Impact of hydrocortisone replacement on bone mineral density and bone turnover markers in patients with primary adrenal insufficiency. Endocr Regul. 2022;56:209–15.

    Article  PubMed  Google Scholar 

  35. Lovas K, Gjesdal CG, Christensen M, Wolff AB, Almas B, Svartberg J, et al. Glucocorticoid replacement therapy and pharmacogenetics in Addison’s disease: effects on bone. Eur J Endocrinol. 2009;160:993.

    Article  PubMed  Google Scholar 

  36. Koetz K, Ventz M, Diederich S, Quinkler M. Bone mineral density is not significantly reduced in adult patients on low-dose glucocorticoid replacement therapy. J Clin Endocrinol Metabol. 2012;97:85–92.

    Article  CAS  Google Scholar 

  37. Schulz J. Reduction in daily hydrocortisone dose improves bone health in primary adrenal insufficiency 2017.

  38. Ferrari D, Sada V, Hasenmajer V, Puliani G, Cozzolino A, Tomaselli A, et al. editors. Bone metabolism and dual-release hydrocortisone: results from a real-life study. Endocrine Abstracts; 2022.

  39. Frara S, Chiloiro S, Porcelli T, Giampietro A, Mazziotti G, De Marinis L, et al. Bone safety of dual-release hydrocortisone in patients with hypopituitarism. Endocrine. 2018;60:528–31.

    Article  CAS  PubMed  Google Scholar 

  40. Nakhleh A, Shehadeh N, Hochberg I, editors. Incidence of glucocorticoid-induced hyperglycemia among hospitalized nondiabetic patients. Endocrine Abstracts; 2018: Bioscientifica.

  41. Charrada I, Wafa A, Fadia B, Lassoued N, Baha Z, Olfa B, et al. editors. Metabolic and cardiovascular consequences of hormone replacement by hydrocortisone in adrenal insufficiency. Endocrine Abstracts; 2022: Bioscientifica.

  42. Clore JN, Thurby-Hay L. Glucocorticoid-Induced Hyperglycemia Endocrine Practice. 2009;15:469–74.

  43. Li J-X, Cummins CL. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat Reviews Endocrinol 2022:1–18.

  44. Alzamily AA, Jifeel WM. The use of collagen type-II as an indicator for assessment regeneration effect post intra-articular pure-PRP injection in KOA patient. J Biomed Biochem. 2022;1(2):7–14. https://doi.org/10.57238/jbb.2022.19388

    Article  Google Scholar 

  45. Bahrambeigi S, Yousefi B, Rahimi M, Shafiei-Irannejad V. Metformin; an old antidiabetic drug with new potentials in bone disorders. Biomed Pharmacother. 2019;109:1593–601.

    Article  CAS  PubMed  Google Scholar 

  46. Montagnani A, Gonnelli S, Alessandri M, Nuti R. Osteoporosis and risk of fracture in patients with diabetes: an update. Aging Clin Exp Res. 2011;23:84–90.

    Article  PubMed  Google Scholar 

  47. Ge W, Jie J, Yao J, Li W, Cheng Y, Lu W. Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts. Mol Med Rep. 2022;25:1–9.

    Article  Google Scholar 

  48. Miyata T, Notoya K, Yoshida K, Horie K, Maeda K, Kurokawa K, et al. Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol. 1997;8:260–70.

    Article  CAS  PubMed  Google Scholar 

  49. Arrieta F, Martinez-Vaello V, Bengoa N, Rosillo M, de Pablo A, Voguel C, et al. Stress hyperglycemia and osteocalcin in COVID-19 critically ill patients on Artificial Nutrition. Nutrients. 2021;13:3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ahmadi S, Pilehvar Y, Zarghami N, Abri A. Efficient osteoblastic differentiation of human adipose-derived stem cells on TiO2 nanoparticles and metformin co-embedded electrospun composite nanofibers. J Drug Deliv Sci Technol. 2021;1:102798.

    Article  Google Scholar 

  51. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60:1577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol. 2020;11:191.

    Article  Google Scholar 

  53. Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res. 2010;25:211–21.

    Article  CAS  PubMed  Google Scholar 

  54. Zhen D, Chen Y, Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diab Complicat. 2010;24:334–44.

    Article  Google Scholar 

  55. Zhou R, Ma Y, Qiu S, Gong Z, Zhou X. Metformin promotes cell proliferation and osteogenesis under high glucose condition by regulating the ROS–AKT–mTOR axis. Mol Med Rep. 2020;22:3387–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen M, Yu H, Jin Y, Mo J, Sui J, Qian X et al. ,. Metformin facilitates osteoblastic differentiation and M2 macrophage polarization by PI3K/AKT/mTOR pathway in human umbilical cord mesenchymal stem cells. Stem Cells International 2022; 2022

  57. Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, et al. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem. 2011;112:2902–9.

    Article  CAS  PubMed  Google Scholar 

  58. Liu L, Zhang C, Hu Y, Peng B. Protective effect of metformin on periapical lesions in rats by decreasing the ratio of receptor activator of nuclear factor kappa B ligand/osteoprotegerin. J Endod. 2012;38:943–7.

    Article  PubMed  Google Scholar 

  59. Jeyabalan J, Shah M, Viollet B, Chenu C. AMP-activated protein kinase pathway and bone metabolism. J Endocrinol. 2011;212:277–90.

    Article  PubMed  Google Scholar 

  60. Takada I, Suzawa M, Matsumoto K, Kato S. Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts. Ann N Y Acad Sci. 2007;1116:182–95.

    Article  CAS  PubMed  Google Scholar 

  61. Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, MacDougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ. J Biol Chem. 2007;282:14515–24.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao J, Li Y, Zhang H, Shi D, Li Q, Meng Y, et al. Preventative effects of metformin on glucocorticoid-induced osteoporosis in rats. J Bone Miner Metab. 2019;37:805–14.

    Article  CAS  PubMed  Google Scholar 

  63. Guo Y, Wei J, Liu C, Li X, Yan W. Metformin regulates bone marrow stromal cells to accelerate bone healing in diabetic mice. eLife. 2023;12:e88310.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Salari-Moghaddam A, Sadeghi O, Keshteli AH, Larijani B, Esmaillzadeh A. Metformin use and risk of fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int. 2019;30:1167–73.

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Yu L, Ye Z, Lin R, Sun AR, Liu L, et al. Association of metformin use with fracture risk in type 2 diabetes: a systematic review and meta-analysis of observational studies. Front Endocrinol (Lausanne). 2022;13:1038603.

    Article  PubMed  Google Scholar 

  66. Bahardoust M, Yarali M, Donyadideh G, Rahimi E, Naderi D, Tehrani FM, et al. The use of metformin, sulfonylurea compounds and insulin and the risk of hip fractures in diabetic patients: a systematic review and meta-analysis of observational studies. BMC Musculoskelet Disord. 2023;24:367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sofer E, Shargorodsky M. Effect of metformin treatment on circulating osteoprotegerin in patients with nonalcoholic fatty liver disease. Hepatol Int. 2016;10:169–74.

    Article  PubMed  Google Scholar 

  68. Zhang L, Zeng F, Jiang M, Han M, Huang B. Roles of osteoprotegerin in endocrine and metabolic disorders through receptor activator of nuclear factor kappa-B ligand/receptor activator of nuclear factor kappa-B signaling. Front Cell Dev Biol. 2022;10:1005681.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wright H, McCarthy HS, Middleton J, Marshall MJ. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med. 2009;2:56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pernicova I, Kelly S, Ajodha S, Sahdev A, Bestwick J, Gabrovska P, et al. Metformin to reduce metabolic complications and inflammation in patients on systemic glucocorticoid therapy: a randomised, double-blind, placebo-controlled, proof-of-concept, phase 2 trial. The Lancet Diabetes & Endocrinology; 2020. p. 8.

  71. Blümel JE, Arteaga E, Aedo S, Arriola-Montenegro J, López M, Martino M, et al. Metformin use is associated with a lower risk of osteoporosis in adult women independent of type 2 diabetes mellitus and obesity. REDLINC IX study. Gynecol Endocrinol. 2020;36:421–5.

    Article  PubMed  Google Scholar 

  72. Vogel F, Braun L, Rubinstein G, Zopp S, Oßwald A, Schilbach K et al. Metformin and bone metabolism in endogenous glucocorticoid excess: an exploratory study. Front Endocrinol 2021:1397.

  73. Samaras K, Makkar S, Crawford JD, Kochan NA, Wen W, Draper B, et al. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: the Sydney Memory and Ageing Study. Diabetes Care. 2020;43:2691–701.

    Article  CAS  PubMed  Google Scholar 

  74. Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism 2022:155160.

  75. Ibraheem EY, Al-Karim IHA. Comparative study between metformin and insulin in controlling uncomplicated gestational diabetes mellitus. Al-Kitab J Pure Sci. 2022;6(1):30–41.

    Article  Google Scholar 

  76. Dahlqvist P, Isaksson M, Bensing S. Is adrenal insufficiency a Rare Disease? Cortisol Excess and Insufficiency. 2016;46:106–14.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript writing. All authors read and approved the final manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Abduladheem Turki Jalil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalil, A.T., Abdulhadi, M.A., Al-Ameer, L.R. et al. Osteoporosis in Adrenal Insufficiency: Could Metformin be Protective?. Ind J Clin Biochem (2023). https://doi.org/10.1007/s12291-023-01153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-023-01153-0

Keywords

Navigation