Skip to main content
Log in

GABA-producing Lactobacillus plantarum inhibits metastatic properties and induces apoptosis of 5-FU-resistant colorectal cancer cells via GABAB receptor signaling

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

5-Fluorouracil (5-FU) is an essential drug in systemic chemotherapy treatments for colorectal cancer (CRC). Despite the development of several treatment strategies over the past decades, the patient benefits of 5-FU-based therapies have been compromised by the development of chemoresistance. Differences in treatment responses among CRC patients may be due to genetic and epigenetic factors unique to individuals. Therefore, important factors for realizing personalized medicine are to accurately understand the causes and mechanisms of drug resistance to 5-FU-based therapies and to identify and validate prognostic biomarkers. Gut microbes that interact directly with the host contribute to human health and cancer control. Lactobacillus plantarum, in particular, has the potential to be a therapeutic agent by producing bioactive compounds that may benefit the host. Here, we investigated the gamma-aminobutyric acid (GABA) and GABAB receptor (GABABR)-dependent signaling pathway as a treatment option for 5-FU-resistant HT-29 cells. GABA-producing L. plantarum activates anti-proliferative, anti-migration, and anti-invasion effects against 5-FU-resistant HT-29 cells. The inhibitory effects of GABA-producing L. plantarum are mediated via GABABR. Activated GABABR induces apoptosis through the inhibition of cAMP-dependent signaling pathways and cellular inhibitor of apoptosis protein 2 (cIAP2) expression. Thus, the GABAergic system has potential in 5-FU-resistant HT-29 cells as a predictive biomarker. In addition, GABA-producing L. plantarum is promising as an adjuvant treatment for 5-FU-resistant CRC, and its intervention in neurobiological signaling imply new possibilities for chemoprevention and the treatment of colon cancer-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal, S., Ahuja, V., and Paul, J. 2018. Dysregulation of GABA-ergic signalling contributes in the pathogenesis of diarrheapre-dominant irritable bowel syndrome. J. Neurogastroenterol. Motil. 24, 422–430.

    Article  PubMed  PubMed Central  Google Scholar 

  • An, J. and Ha, E.M. 2016. Combination therapy of Lactobacillus plantarum supernatant and 5-fluouracil increases chemosensitivity in colorectal cancer cells. J. Microbiol. Biotechnol. 26, 1490–1503.

    Article  CAS  PubMed  Google Scholar 

  • An, J. and Ha, E.M. 2020. Lactobacillus-derived metabolites enhance the antitumor activity of 5-FU and inhibit metastatic behavior in 5-FU-resistant colorectal cancer cells by regulating claudin-1 expression. J. Microbiol. 58, 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, E., Ross, R.P., O’Toole, P.W., Fitzgerald, G.F., and Stanton, C. 2012. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411–417.

    Article  CAS  PubMed  Google Scholar 

  • Boucher, M.J., Duchesne, C., Lainé, J., Morisset, J., and Rivard, N. 2001. cAMP protection of pancreatic cancer cells against apoptosis induced by ERK inhibition. Biochem. Biophys. Res. Commun. 285, 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Cho, I. and Blaser, M.J. 2012. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 13, 260–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, T.C. 2006. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681.

    Article  CAS  PubMed  Google Scholar 

  • Chou, T.C. 2010. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446.

    Article  CAS  PubMed  Google Scholar 

  • Dagorn, A., Hillion, M., Chapalain, A., Lesouhaitier, O., Duclairoir Poc, C., Vieillard, J., Chevalier, S., Taupin, L., Le Derf, F., and Feuilloley, M.G.J. 2013. Gamma-aminobutyric acid acts as a specific virulence regulator in Pseudomonas aeruginosa. Microbiology 159, 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Demakova, E.V., Korobov, V.P., and Lemkina, L.M. 2003. Determination of γ-aminobutyric acid concentration and activity of glutamate decarboxylase in blood serum of patients with multiple sclerosis. Klin. Lab. Diagn. 4, 15–17.

    Google Scholar 

  • Entschladen, F., Drell, T.L.4th, Lang, K., Joseph, J., and Zaenker, K. 2005. Neurotransmitters and chemokines regulate tumor cell, migration: Potential for a new pharmacological approach to inhibit invasion and metastasis development. Curr. Pharm. Des. 11, 403–411.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Garcia, B., Eiró, N., Marín, L., González-Reyes, S., González, L.O., Lamelas, M.L., and Vizoso, F.J. 2014. Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis. Histopathology 64, 512–522.

    Article  PubMed  Google Scholar 

  • Hemarajata, P. and Versalovic, J. 2013. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 6, 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyland, N.P. and Cryan, J.F. 2010. A gut feeling about GABA: Focus on GABAB receptors. Front. Pharmacol. 1, 124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jembrek, M.J., Auteri, M., Serio, R., and Vlainic, J. 2017. GABAergic system in action: Connection to gastrointestinal stress-related disorders. Curr. Pharm. Des. 23, 4003–4011.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., Shi, J., et al. 2015. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48, 186–194.

    Article  PubMed  Google Scholar 

  • Jiang, X., Su, L., Zhang, Q., He, C., Zhang, Z., Yi, P., and Liu, J. 2012. GABAB receptor complex as a potential target for tumor therapy. J. Histochem. Cytochem. 60, 269–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph, J., Niggemann, B., Zaenker, K.S., and Entschladen, F. 2002. The neurotransmitter γ-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res. 62, 6467–6469.

    CAS  PubMed  Google Scholar 

  • Lee, J.J., Beumer, J.H., and Chu, E. 2016. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother. Pharmacol. 78, 447–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. and Cao, Y. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39, 1107–1116.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Xiang, Y.Y., Lu, W.Y., Liu, C., and Li, J. 2012. A novel role of intestine epithelial GABAergic signaling in regulating intestinal fluid secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G453–G460.

    Article  CAS  PubMed  Google Scholar 

  • Masur, K., Niggemann, B., Zanker, K.S., and Entschladen, F. 2001. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by β-blockers. Cancer Res. 61, 2866–2869.

    CAS  PubMed  Google Scholar 

  • Mazzoli, R. and Pessione, E. 2016. The neuro-endocrinological role of microbial glutamate and GABA signaling. Front. Microbiol. 7, 1934.

    Article  PubMed  PubMed Central  Google Scholar 

  • McQuade, R.M., Stojanovska, V., Bornstein, J.C., and Nurgali, K. 2017. Colorectal cancer chemotherapy: the evolution of treatment and new approaches. Curr. Med. Chem. 24, 1537–1557.

    Article  CAS  PubMed  Google Scholar 

  • Miura, K., Karasawa, H., and Sasaki, I. 2009. cIAP2 as a therapeutic target in colorectal cancer and other malignancies. Expert Opin. Ther. Targets 13, 1333–1345.

    Article  CAS  PubMed  Google Scholar 

  • Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., and Rudi, K. 2014. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 26, 1155–1162.

    Article  CAS  PubMed  Google Scholar 

  • Ngo, D.H. and Vo, T.S. 2019. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules 24, 2678.

    Article  CAS  PubMed Central  Google Scholar 

  • Nishihara, H., Hwang, M., Kizaka-Kondoh, S., Eckmann, L., and Insel, P.A. 2004. Cyclic AMP promotes cAMP-responsive element-binding protein-dependent induction of cellular inhibitor of apoptosis protein-2 and suppresses apoptosis of colon cancer cells through ERK1/2 and p38 MAPK. J. Biol. Chem. 279, 26176–26183.

    Article  CAS  PubMed  Google Scholar 

  • Nishihara, H., Kizaka-Kondoh, S., Insel, P.A., and Eckmann, L. 2003. Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc. Natl. Acad. Sci. USA 100, 8921–8926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega, A. 2003. A new role for GABA: Inhibition of tumor cell migration. Trends Pharmacol. Sci. 24, 151–154.

    Article  CAS  PubMed  Google Scholar 

  • Patel, R. and DuPont, H.L. 2015. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin. Infect. Dis. 60, S108–S121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., and Margolles, A. 2017. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 61, 1600240.

    Article  CAS  Google Scholar 

  • Schertzer, J.W., Boulette, M.L., and Whiteley, M. 2009. More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol. 17, 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Shekh, S.L., Dave, J.M., and Vyas, B.R.M. 2016. Characterization of Lactobacillus plantarum strains for functionality, safety and γ-amino butyric acid production. LWT 74, 234–241.

    Article  CAS  Google Scholar 

  • Shu, Q., Liu, J., Liu, X., Zhao, S., Li, H., Tan, Y., and Xu, J. 2016. GABABR/GSK-3β/NF-κB signaling pathway regulates the proliferation of colorectal cancer cells. Cancer Med. 5, 1259–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel, R.L., Miller, K.D., Fedewa, S.A., Ahnen, D.J., Meester, R.G.S., Barzi, A., and Jemal, A. 2017. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 67, 177–193.

    Article  PubMed  Google Scholar 

  • Simon, K. 2016. Colorectal cancer development and advances in screening. Clin. Interv. Aging 11, 967–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sougiannis, A.T., VanderVeen, B.N., Enos, R.T., Velazquez, K.T., Bader, J.E., Carson, M., Chatzistamou, I., Walla, M., Pena, M.M., Kubinak, J.L., et al. 2019. Impact of 5 fluorouracil chemotherapy on gut inflammation, functional parameters, and gut microbiota. Brain Behav. Immun. 80, 44–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbroucke, R.E. and Libert, C. 2014. Is there new hope for therapeutic matrix metalloproteinase inhibition?. Nat. Rev. Drug Discov. 13, 904–927.

    Article  CAS  PubMed  Google Scholar 

  • Vodenkova, S., Buchler, T., Cervena, K., Veskrnova, V., Vodicka, P., and Vymetalkova, V. 2020. 5-Fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 206, 107447.

    Article  CAS  PubMed  Google Scholar 

  • Williamson, N.R., Fineran, P.C., Leeper, F.J., and Salmond, G.P.C. 2006. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol. 4, 887–899.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Chen, H., Zhang, R., Liu, Y., Kong, N., Guo, Y., and Xu, M. 2020. 5-Fluorouracil induced dysregulation of the microbiomegut-brain axis manifesting as depressive like behaviors in rats. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165884.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang, K., Jiang, Y., Feng, X., Li, L., Dang, F., Zhang, W., and Man, C. 2018. Transcriptomic response to GABA-producing Lactobacillus plantarum CGMCC 1.2437T induced by L-MSG. PLoS ONE 13, e0199021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Research Foundation of Korea (NRF2016R1D1A1B03934262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Mi Ha.

Additional information

Conflict of Interest

We have no conflicts of interest to report.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Seok, H. & Ha, EM. GABA-producing Lactobacillus plantarum inhibits metastatic properties and induces apoptosis of 5-FU-resistant colorectal cancer cells via GABAB receptor signaling. J Microbiol. 59, 202–216 (2021). https://doi.org/10.1007/s12275-021-0562-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0562-5

Keywords

Navigation