Skip to main content
Log in

Influences of genetically perturbing synthesis of the typical yellow pigment on conidiation, cell wall integrity, stress tolerance, and cellulase production in Trichoderma reesei

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The prominent protein producing workhorse Trichoderma reesei secretes a typical yellow pigment that is synthesized by a gene cluster including two polyketide synthase encoding genes sor1 and sor2. Two transcription factors (YPR1 and YPR2) that are encoded in the same cluster have been shown to regulate the expression of the sor genes. However, the physiological relevance of the yellow pigment synthesis in T. reesei is not completely clear. In this study, a yellow pigment hyper-producer OEypr1 and three yellow pigment non-producers, OEypr1-sor1, Δypr1, and OEypr2, were constructed. Their phenotypic features in mycelial growth, conidiation, cell wall integrity, stress tolerance, and cellulase production were determined. Whereas hyperproduction of the yellow pigment caused significant defects in all the physiological aspects tested, the non-producers showed similar colony growth, but improved conidiation, maintenance of cell wall integrity, and stress tolerance compared to the control strain. Moreover, in contrast to the severely compromised extracellular cellobiohydrolase production in the yellow pigment hyperproducer, loss of the yellow pigment hardly affected induced cellulase gene expression. Our results demonstrate that interfering with the yellow pigment synthesis constitutes an engineering strategy to endow T. reesei with preferred features for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghcheh, R.K., Németh, Z., Atanasova, L., Fekete, E., Paholcsek, M., Sándor, E., Aquino, B., Druzhinina, I.S., Karaffa, L., and Kubicek, C.P. 2014. The VELVET a orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression. PLoS ONE 9, e112799.

    Article  Google Scholar 

  • Bischof, R.H., Ramoni, J., and Seiboth, B. 2016. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb. Cell Fact. 15, 106.

    Article  Google Scholar 

  • Derntl, C., Guzmán-Chávez, F., Mello-De-Sousa, T.M., Busse, H.J., Driessen, A.J.M., Mach, R.L., and Mach-Aigner, A.R. 2017. In vivo study of the sorbicillinoid gene cluster in Trichoderma reesei. Front. Microbiol. 8, 2037.

    Article  Google Scholar 

  • Derntl, C., Rassinger, A., Srebotnik, E., Mach, R.L., and Mach-Aigner, A.R. 2016. Identification of the main regulator responsible for synthesis of the typical yellow pigment produced by Trichoderma reesei. Appl. Environ. Microbiol. 82, 6247–6257.

    Article  CAS  Google Scholar 

  • Deshpande, M.V., Eriksson, K.E., and Pettersson, L.G. 1984. An assay for selective determination of exo-1,4,-β-glucanases in a mixture of cellulolytic enzymes. Anal. Biochem. 138, 481–487.

    Article  CAS  Google Scholar 

  • El-Elimat, T., Raja, H.A., Figueroa, M., Swanson, S.M., Falkinham, J.O. 3rd, Lucas, D.M., Grever, M.R., Wani, M.C., Pearce, C.J., and Oberlies, N.H. 2015. Sorbicillinoid analogs with cytotoxic and selective anti-Aspergillus activities from Scytalidium album. J. Antibiot. 68, 191–196.

    Article  CAS  Google Scholar 

  • Fonseca, L.M., Parreiras, L.S., and Murakami, M.T. 2020. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production. Biotechnol. Biofuels 13, 93.

    Article  CAS  Google Scholar 

  • Gupta, V.K., Kubicek, C.P., Berrin, J.G., Wilson, D.W., Couturier, M., Berlin, A., Filho, E.X.F., and Ezeji, T. 2016. Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem. Sci. 41, 633–645.

    Article  CAS  Google Scholar 

  • Harned, A.M. and Volp, K.A. 2011. The sorbicillinoid family of natural products: isolation, biosynthesis, and synthetic studies. Nat. Prod. Rep. 28, 1790–1810.

    Article  CAS  Google Scholar 

  • Hitzenhammer, E., Büschl, C., Sulyok, M., Schuhmacher, R., Kluger, B., Wischnitzki, E., and Schmoll, M. 2019. YPR2 is a regulator of light modulated carbon and secondary metabolism in Trichoderma reesei. BMC Genomics 20, 211.

    Article  Google Scholar 

  • Keshavarz, B. and Khalesi, M. 2016. Trichoderma reesei, a superior cellulase source for industrial applications. Biofuels 7, 713–721.

    Article  CAS  Google Scholar 

  • Li, C., Lin, F., Sun, W., Yuan, S., Zhou, Z., Wu, F.G., and Chen, Z. 2018. Constitutive hyperproduction of sorbicillinoids in Trichoderma reesei ZC121. Biotechnol. Biofuels 11, 291.

    Article  CAS  Google Scholar 

  • Lv, X., Zheng, F., Li, C., Zhang, W., Chen, G., and Liu, W. 2015. Characterization of a copper responsive promoter and its mediated overexpression of the xylanase regulator 1 results in an induction-independent production of cellulases in Trichoderma reesei. Biotechnol. Biofuels 8, 67.

    Article  Google Scholar 

  • Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577.

    Article  CAS  Google Scholar 

  • Mach, R.L., Schindler, M., and Kubicek, C.P. 1994. Transformation of Trichoderma reesei based on hygromycin-B resistance using homologous expression signals. Curr. Genet. 25, 567–570.

    Article  CAS  Google Scholar 

  • Mandels, M. 1985. Applications of cellulases. Biochem. Soc. Trans. 13, 414–416.

    Article  CAS  Google Scholar 

  • Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., Chapman, J., Chertkov, O., Coutinho, P.M., Cullen, D., et al. 2008. Genome sequencing and analysis of the biomassdegrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26, 553–560.

    Article  CAS  Google Scholar 

  • Maskey, R.P., Grün-Wollny, I., and Laatsch, H. 2005. Sorbicillin analogues and related dimeric compounds from Penicillium notatum. J. Nat. Prod. 68, 865–870.

    Article  CAS  Google Scholar 

  • Meng, J., Wang, X., Xu, D., Fu, X., Zhang, X., Lai, D., Zhou, L., and Zhang, G. 2016. Sorbicillinoids from fungi and their bioactivities. Molecules 21, 715.

    Article  Google Scholar 

  • Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  • Monroy, A.A., Stappler, E., Schuster, A., Sulyok, M., and Schmoll, M. 2017. A CRE1-regulated cluster is responsible for light dependent production of dihydrotrichotetronin in Trichoderma reesei. PLoS ONE 12, e0182530.

  • Nakari-Setälä, T., Aro, N., Kalkkinen, N., Alatalo, E., and Penttilä, M. 1996. Genetic and biochemical characterization of the Trichoderma reesei hydrophobin HFBI. Eur. J. Biochem. 235, 248–255.

    Article  Google Scholar 

  • Ram, A.F.J. and Klis, F.M. 2006. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat. Protoc. 1, 2253–2256.

    Article  CAS  Google Scholar 

  • Singh, A., Taylor, L.E. 2nd, Vander Wall, T.A., Linger, J., Himmel, M.E., Podkaminer, K., Adney, W.S., and Decker, S.R. 2015. Heterologous protein expression in Hypocrea jecorina: a historical perspective and new developments. Biotechnol. Adv. 33, 142–154.

    Article  CAS  Google Scholar 

  • Wang, L., Lv, X., Cao, Y., Zheng, F., Meng, X., Shen, Y., Chen, G., Liu, W., and Zhang, W. 2019. A novel transcriptional regulator RXE1 modulates the essential transactivator XYR1 and cellulase gene expression in Trichoderma reesei. Appl. Microbiol. Biotechnol. 103, 4511–4523.

    Article  CAS  Google Scholar 

  • Zhang, W., Kou, Y., Xu, J., Cao, Y., Zhao, G., Shao, J., Wang, H., Wang, Z., Bao, X., Chen, G., et al. 2013. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J. Biol. Chem. 288, 32861–32872.

    Article  CAS  Google Scholar 

  • Zhang, F., Li, J.X., Champreda, V., Liu, C.G., Bai, F.W., and Zhao, X.Q. 2020. Global reprogramming of gene transcription in Trichoderma reesei by overexpressing an artificial transcription factor for improved cellulase production and identification of Ypr1 as an associated regulator. Front. Bioeng. Biotechnol. 8, 649.

    Article  Google Scholar 

  • Zhang, Y.H.P. and Lynd, L.R. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88, 797–824.

    Article  CAS  Google Scholar 

  • Zheng, F., Cao, Y., Lv, X., Wang, L., Li, C., Zhang, W., Chen, G., and Liu, W. 2017. A copper-responsive promoter replacement system to investigate gene functions in Trichoderma reesei: a case study in characterizing SAGA genes. Appl. Microbiol. Biotechnol. 101, 2067–2078.

    Article  CAS  Google Scholar 

  • Zhou, Q., Xu, J., Kou, Y., Lv, X., Zhang, X., Zhao, G., Zhang, W., Chen, G., and Liu, W. 2012. Differential involvement of β-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot. Cell 11, 1371–1381.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Key Research and Development Program of China (2019YFA-0905700), National Natural Science Foundation of China (31770047, 31970029, and 31670040), and Major basic research projects of Natural Science Foundation of Shandong Province (ZR2019ZD19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Liu.

Ethics declarations

We have no conflicts of interest to report.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., An, N., Guo, J. et al. Influences of genetically perturbing synthesis of the typical yellow pigment on conidiation, cell wall integrity, stress tolerance, and cellulase production in Trichoderma reesei. J Microbiol. 59, 426–434 (2021). https://doi.org/10.1007/s12275-021-0433-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0433-0

Keywords

Navigation