Skip to main content
Log in

Temperature-dependent self-trapped exciton emission in Cu(I) doped zinc-based metal halides from well-resolved excited state structures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties, showing great potential applications such as light-emitting diodes (LEDs) and sensing. Herein, we successfully synthesized Cu+ doped (MA)2ZnCl4 metal halides by a slow evaporation solvent method. The introduction of Cu+ results in sky-blue self-trapped exciton emission in (MA)2ZnCl4 at 486 nm at room temperature, and a photoluminescence quantum yield is as high as 54.9%. Interestingly, at low temperatures, Cu+-doped (MA)2ZnCl4 exhibits two emission peaks located at 482 and 605 nm, respectively. This temperature-dependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface. In addition, the temperature sensor we fitted has good performance (Sr = 1.65 %·K−1), which is the first attempt in Cu+ doped Zn-based metal halides. Our work enriches the family of sky-blue metal halides and provides a promising strategy for building sky-blue LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C. X.; Zhang, S.; Zeng, R. S.; Luo, B. B.; Chen, Y. J.; Cao, S.; Zhao, J. L.; Zou, B. S.; Zhang, J. Z. Competing energy transfer in two-dimensional Mn2+-doped BDACdBr4 hybrid layered perovskites with near-unity photoluminescence quantum yield. ACS Appl. Mater. Interfaces 2022, 14, 45725–5733.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, C. L.; Nguyen, T.; Boehme, S. C.; Moskalenko, A.; Dirin, D. N.; Bodnarchuk, M. I.; Katan, C.; Even, J.; Rainò, G.; Kovalenko, M. V. Many-body correlations and exciton complexes in CsPbBr3 quantum dots. Adv. Mater. 2023, 35, 2208354.

    Article  CAS  Google Scholar 

  3. Zhang, Q. Y.; Diao, F. Y.; Xue, X. Y.; Sheng, X. L.; Barba, D.; Wang, Y. Q. Self-assembly of CsPbBr3 nanocubes into 2D nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 44777–44785.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, X.; Fang, W. H.; Long, R.; Prezhdo, O. V. Chemical passivation of methylammonium fragments eliminates traps, extends charge lifetimes, and restores structural stability of CH3NH3PbI3 perovskite. Nano Res. 2022, 15, 4765–4772.

    Article  CAS  Google Scholar 

  5. Su, B. B.; Xia, Z. G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials. Chin. J. Lumin. 2021, 42, 733–754.

    Article  CAS  Google Scholar 

  6. Bao, S.; Yu, H. Y.; Gao, G. Y.; Zhu, H. Y.; Wang, D. S.; Zhu, P. F.; Wang, G. F. Rare-earth single atom based luminescent composite nanomaterials: Tunable full-color single phosphor and applications in WLEDs. Nano Res. 2022, 15, 3594–3605.

    Article  CAS  Google Scholar 

  7. Han, D. Y.; Wang, J.; Agosta, L.; Zang, Z.; Zhao, B.; Kong, L. M.; Lu, H. Z.; Mosquera-Lois, I.; Carnevali, V.; Dong, J. C. et al. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature 2023, 622, 493–498.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, T.; Li, K.; Lei, J. Y.; Niu, Q.; Peng, H.; Zou, B. S. Origin of singlet self-trapped exciton and enhancement of photoluminescence quantum yield of organic-inorganic hybrid antimony(III) chlorides with the [SbCl5]2− units. Nano Res. 2023, 16, 12680–12688.

    Article  CAS  Google Scholar 

  9. Ling, Y. M.; Zhao, X. Q.; Hao, P. Y.; Song, Y. D.; Liu, J. W.; Zhao, L.; Qian, Y.; Guo, C. F. Gd3+-sensitized rare earth fluoride scintillators for high-resolution flexible X-ray imaging. Chem. Eng. J. 2023, 476, 146790.

    Article  CAS  Google Scholar 

  10. Li, D. Y.; Wu, J. H.; Wang, X. Y.; Zhang, X. Y.; Yue, C. Y.; Lei, X. W. Reversible triple-mode photo-and radioluminescence and nonlinear optical switching in highly efficient 0D hybrid cuprous halides. Chem. Mater. 2023, 35, 6598–6611.

    Article  CAS  Google Scholar 

  11. Yang, H. X.; Chen, X. X.; Chu, Y. Y.; Sun, C. J.; Lu, H. L.; Yuan, M. J.; Zhang, Y. H.; Long, G. K.; Zhang, L. B.; Li, X. Y. A universal hydrochloric acid-assistant powder-to-powder strategy for quick and mass preparation of lead-free perovskite microcrystals. Light Sci. Appl. 2023, 12, 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cui, M. H.; Qin, C. C.; Zhou, Z. P.; Jiang, Y. Z.; Zhang, S. C.; Yuan, Z. Y.; Yuan, M. J.; Yu, K.; Jiang, Y. H.; Liu, Y. F. Tuning coherent phonon dynamics in two-dimensional phenylethylammonium lead bromide perovskites. Nano Res. 2023, 16, 3408–3414.

    Article  CAS  Google Scholar 

  13. Yao, J. L.; Zhang, Z. X.; Wang, D. Y.; Huang, K. K.; Yang, W. S.; Sun, L. T.; Xie, R. G.; Pradhan, N. Mapping the space of inorganic and hybrid halides and their optical properties using mechanochemistry and first-principles calculations. Chem. Mater. 2023, 35, 8745–8757.

    Article  CAS  Google Scholar 

  14. Li, X. H.; Li, Y. F.; Feng, Y. X.; Qi, J. H.; Shen, J. L.; Shi, G. D.; Yang, S. P.; Yuan, M. J.; He, T. W. Strain regulation of mixed-halide perovskites enables high-performance wide-bandgap photovoltaics. Adv. Mater., in press, https://doi.org/10.1002/adma.202401103.

  15. Zhang, J. S.; Shum, P. P.; Su, L. A review of geometry-confined perovskite morphologies: From synthesis to efficient optoelectronic applications. Nano Res. 2022, 15, 7402–7431.

    Article  CAS  Google Scholar 

  16. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.

    Article  CAS  Google Scholar 

  17. Chaudhary, M.; Karmakar, A.; Mishra, V.; Bhattacharya, A.; Mumbaraddi, D.; Mar, A.; Michaelis, V. K. Effect of aliovalent bismuth substitution on structure and optical properties of CsSnBr3. Commun. Chem. 2023, 6, 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao, Z. W.; Song, Z. N.; Yan, Y. F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792.

    Article  CAS  Google Scholar 

  19. Morad, V.; Cherniukh, I.; Pöttschacher, L.; Shynkarenko, Y.; Yakunin, S.; Kovalenko, M. V. Manganese(II) in tetrahedral halide environment: Factors governing bright green luminescence. Chem. Mater. 2019, 31, 10161–10169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bae, Y.; Ryu, J.; Yoon, S.; Kang, D. W. Recent progress in quasi-two-dimensional and quantum dot perovskite light-emitting diodes harnessing the diverse effects of ligands: A review. Nano Res. 2022, 15, 6449–6465.

    Article  Google Scholar 

  21. Morad, V.; Shynkarenko, Y.; Yakunin, S.; Brumberg, A.; Schaller, R. D.; Kovalenko, M. V. Disphenoidal zero-dimensional lead, tin, and germanium halides: Highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. J. Am. Chem. Soc. 2019, 141, 9764–9768.

    Article  CAS  PubMed  Google Scholar 

  22. Su, B. B.; Li, M. Z.; Song, E. H.; Xia, Z. G. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission. Adv. Funct. Mater. 2021, 31, 2105316.

    Article  CAS  Google Scholar 

  23. Tan, Z. F.; Chu, Y. M.; Chen, J. X.; Li, J. H.; Ji, G. Q.; Niu, G. D.; Gao, L.; Xiao, Z. W.; Tang, J. Lead- free perovskite variant solid solutions Cs2Sn1−xTexCl6: Bright luminescence and high anti-water stability. Adv. Mater. 2020, 32, 2002443.

    Article  CAS  Google Scholar 

  24. Jin, J. C.; Han, K.; Hu, Y. K.; Xia, Z. G. Zn2+ doping in organic manganese(II) bromide hybrid scintillators toward enhanced light yield for X-ray imaging. Adv. Opt. Mater. 2023, 11, 2300330.

    Article  CAS  Google Scholar 

  25. Shi, Z. F.; Zhang, F.; Yan, J. J.; Zhang, Y.; Chen, X.; Chen, S.; Wu, D.; Li, X. J.; Zhang, Y.; Shan, C. X. Robust frequency-upconversion lasing operated at 400 K from inorganic perovskites microcavity. Nano Res. 2022, 15, 492–501.

    Article  CAS  Google Scholar 

  26. Ren, M.; Zhang, S.; Chang, T.; Yao, J. D.; Gao, Y. L.; Yuan, M. J.; Cao, S.; Zhao, J. L.; Zou, B. S.; Zeng, R. S. Cu substitution boosts self-trapped exciton emission in zinc-based metal halides for sky-blue light-emitting diodes. J. Mater. Chem. C 2022, 10, 9530–9537.

    Article  CAS  Google Scholar 

  27. Yang, B.; Chen, J. S.; Hong, F.; Mao, X.; Zheng, K. B.; Yang, S. Q.; Li, Y. J.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 12471–12475.

    Article  CAS  Google Scholar 

  28. Zhu, D. X.; Zaffalon, M. L.; Pinchetti, V.; Brescia, R.; Moro, F.; Fasoli, M.; Fanciulli, M.; Tang, A. W.; Infante, I.; De Trizio, L. et al. Bright blue emitting Cu-doped Cs2ZnCl4 colloidal nanocrystals. Chem. Mater. 2020, 32, 5897–5903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng, P. F.; Feng, L.; Liu, Y. F.; Zheng, D. Y.; Sang, Y. B.; Zhao, W. Y.; Yang, Y.; Yang, S. Q.; Wei, D. H.; Wang, G. X. et al. Doped zero-dimensional cesium zinc halides for high-efficiency blue light emission. Angew. Chem., Int. Ed. 2020, 59, 21414–21418.

    Article  CAS  Google Scholar 

  30. Tian, Y.; Peng, H.; Wei, Q. L.; Chen, Y. X.; Xia, J. J.; Lin, W. C.; Peng, C. Y.; He, X. F.; Zou, B. S. Moisture- induced reversible structure conversion of zero-dimensional organic cuprous bromide hybrids for multiple photoluminescent anti-counterfeiting, information encryption and rewritable luminescent paper. Chem. Eng. J. 2023, 458, 141436.

    Article  CAS  Google Scholar 

  31. Xing, Z. S.; Zhou, Z. C.; Zhong, G. H.; Chan, C. C. S.; Li, Y. Y.; Zou, X. H.; Halpert, J. E.; Su, H. B.; Wong, K. S. Barrierless exciton self-trapping and emission mechanism in low-dimensional copper halides. Adv. Funct. Mater. 2022, 32, 2207638.

    Article  CAS  Google Scholar 

  32. Lim, A. R. Effects of paramagnetic interactions by the partial replacement of Zn2+ ions with Cu2+ ions in lead-free zinc-based perovskite (MA)2ZnCl4 crystal by MAS NMR. AIP Adv. 2019, 9, 105115.

    Article  Google Scholar 

  33. Gao, Y. L.; Han, X. X.; Wei, Q. L.; Chang, T.; Chen, Y. J.; Zou, B. S.; Cao, S.; Zhao, J. L.; Zeng, R. S. Efficient orange emission in Mn2+-doped Cs3Cd2Cl7 perovskites with excellent stability. J. Phys. Chem. Lett. 2022, 13, 7177–7184.

    Article  CAS  PubMed  Google Scholar 

  34. Chang, T.; Dai, Y. R.; Wei, Q. L.; Xu, X.; Cao, S.; Zou, B. S.; Zhang, Q. L.; Zeng, R. S. Temperature-dependent reversible optical properties of Mn-based organic-inorganic hybrid (C8H20N)2MnCl4 metal halides. ACS Appl. Mater. Interfaces 2023, 15, 5487–5494.

    Article  CAS  PubMed  Google Scholar 

  35. Wei, Q. L.; Chang, T.; Zeng, R. S.; Cao, S.; Zhao, J. L.; Han, X. X.; Wang, L. S.; Zou, B. S. Self- trapped exciton emission in a zero-dimensional (TMA)2SbCl5DMF single crystal and molecular dynamics simulation of structural stability. J. Phys. Chem. Lett. 2021, 12, 7091–7099.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng, Z. L.; Meng, M. Z.; Wang, J. Y.; Li, Z. Y.; He, J.; Liang, H.; Qiao, X.; Liu, Y. L.; Ou, J. High-sensitivity NaYF4:Yb3+/Ho3+/Tm3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels. Nanoscale 2023, 15, 11179–11189.

    Article  CAS  PubMed  Google Scholar 

  37. Xiao, Z. W.; Meng, W. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality. Mater. Horiz. 2017, 4, 206–216.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22175043 and 52162021) and Guangxi Science and Technology Plan Project (No. Guike AA23073018). The calculation was supported by the high-performance computing platform of Guangxi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruosheng Zeng.

Electronic Supplementary Material

12274_2024_6664_MOESM1_ESM.pdf

Temperature-dependent self-trapped exciton emission in Cu(I) doped zinc-based metal halides from well-resolved excited state structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Zhang, S., Luo, N. et al. Temperature-dependent self-trapped exciton emission in Cu(I) doped zinc-based metal halides from well-resolved excited state structures. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6664-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6664-8

Keywords

Navigation