Skip to main content
Log in

Improving discharge voltage and ion storage dynamic in polyaniline via modulation of carrier charge density for magnesium-metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rechargeable magnesium-metal batteries (RMBs) have gained much attention due to their abundant resources as well as high safety. However, the high charge density of Mg2+ is one of the main reasons for the slow kinetics performance of RMBs, and modulation of the charge density is an important strategy to improve the kinetics and electrochemical performance of RMBs. Herein, we report on the conductive polymer polyaniline (PANI) for RMBs, which is found to have excellent kinetics and high discharge voltage when storing MgCl+. In the storage of MgCl+, PANI exhibits a high average discharge voltage platform is 2.3 V vs. Mg2+/Mg, which is higher than that in storage of Mg2+. We demonstrated the reversible intercalation/de-intercalation of MgCl+ in PANI accompanying with the reversible transformation between the quinone ring (C–C,–N=) and the benzene ring (C=C,–NH–) during charging and discharging. Density functional theory calculation reveals that PANI exhibit higher voltages (2.25 V vs. 1.82 V) along with lower diffusion energy barriers (1.27 eV vs. 1.55 eV) for MgCl+ storage compared to Mg2+ storage. This work refines the storage mechanism of PANI in RMBs and provides new guidelines for the application of PANI in RMBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, W. W.; Tang, C.; Lan, B. X.; Chen, L. N.; Tang, W.; Zuo, C. L.; Dong, S. J.; An, Q. Y.; Luo, P. K0.23 V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. J. Alloys Compd. 2020, 819, 152971

    Article  CAS  Google Scholar 

  2. Zhang, W. W.; Zuo, C. L.; Tang, C.; Tang, W.; Lan, B. X.; Fu, X. D.; Dong, S. J.; Luo, P. The current developments and perspectives of V2O5 as cathode for rechargeable aqueous zinc-ion batteries. Energy Technol. 2021, 9, 2000789.

    Article  CAS  Google Scholar 

  3. Zhang, L. X.; Liu, Y. M.; You, Y.; Vinu, A.; Mai, L. Q. NASICONs-type solid-state electrolytes: The history, physicochemical properties, and challenges. Interdiscip. Mater. 2023, 2, 91–110.

    Article  Google Scholar 

  4. Li, M.; Wang, X. P.; Meng, J. S.; Zuo, C. L.; Wu, B. K.; Li, C.; Sun, W.; Mai, L. Q. Comprehensive understandings of hydrogen bond chemistry in aqueous batteries. Adv. Mater. 2023, 36, 2308628.

    Article  Google Scholar 

  5. Zhuo, S. F.; Huang, G.; Sougrat, R.; Guo, J.; Wei, N. N.; Shi, L.; Li, R. Y.; Liang, H. F.; Shi, Y.; Zhang, Q. Y. et al. Hierarchical nanocapsules of Cu-doped MoS2@H-substituted graphdiyne for magnesium storage. ACS Nano 2022, 16, 3955–3964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279.

    Article  CAS  Google Scholar 

  7. Chen, D.; Tao, D. G.; Ren, X.; Wen, F. J.; Li, T.; Chen, Z. X.; Cao, Y. L.; Xu, F. A molybdenum polysulfide in-situ generated from ammonium tetrathiomolybdate for high-capacity and high-power rechargeable magnesium battery cathodes. ACS Nano 2022, 16, 20510–20520.

    Article  CAS  PubMed  Google Scholar 

  8. Xiong, F. Y.; Jiang, Y. L.; Cheng, L.; Yu, R. H.; Tan, S. S.; Tang, C.; Zuo, C. L.; An, Q. Y.; Zhao, Y. L.; Gaumet, J. J. et al. Low-strain TiP2O7 with three-dimensional ion channels as long-life and high-rate anode material for Mg-ion batteries. Interdiscip. Mater. 2022, 1, 140–147.

    Article  Google Scholar 

  9. Xiong, F. Y.; Fan, Y. Q.; Tan, S. S.; Zhou, L. M.; Xu, Y. N.; Pei, C. Y.; An, Q. Y.; Mai, L. Q. Magnesium storage performance and mechanism of CuS cathode. Nano Energy 2018, 47, 210–216.

    Article  CAS  Google Scholar 

  10. Yang, J. D.; Wang, J. X.; Zhu, L.; Wang, X.; Dong, X. Y.; Zeng, W.; Wang, J. F.; Pan, F. S. Boosting magnesium storage in MoS2via a 1T phase introduction and interlayer expansion strategy: Theoretical prediction and experimental verification. Sustain. Energy Fuels 2021, 5, 5471–5480.

    Article  CAS  Google Scholar 

  11. Ye, Z. S.; Li, P.; Wei, W. T.; Huang, C.; Mi, L. W.; Zhang, J. L.; Zhang, J. J. In situ anchoring anion-rich and multi-cavity NiS2 nanoparticles on NCNTs for advanced magnesium-ion batteries. Adv. Sci. 2022, 9, 2200067

    Article  CAS  Google Scholar 

  12. Xu, H.; Li, Y.; Zhu, D.; Li, Z.; Sun, F. Z.; Zhu, W.; Chen, Y.; Zhang, J. C.; Ren, L.; Zhang, S. H. et al. Synchrotron radiation spectroscopic studies of Mg2+ storage mechanisms in high-performance rechargeable magnesium batteries with Co-doped FeS2 cathodes. Adv. Energy Mater. 2022, 12, 2201608.

    Article  CAS  Google Scholar 

  13. Ding, S. Q.; Dai, X.; Li, Z. J.; Meng, A. L.; Wang, L.; Li, G. C.; Li, S. X. Strategy of cation/anion co-doping for potential elevating of VS4 cathode for magnesium ion batteries. Chem. Eng. J. 2022, 439, 135778.

    Article  CAS  Google Scholar 

  14. Zuo, C. L.; Xiao, Y.; Pan, X. J.; Xiong, F. Y.; Zhang, W. W.; Long, J. C.; Dong, S. J.; An, Q. Y.; Luo, P. Organic–inorganic superlattices of vanadium oxide@polyaniline for high-performance magnesium-ion batteries. ChemSusChem 2021, 14, 2093–2099.

    Article  CAS  PubMed  Google Scholar 

  15. Ye, X. T.; Li, H. Y.; Hatakeyama, T.; Kobayashi, H.; Mandai, T.; Okamoto, N. L.; Ichitsubo, T. Examining electrolyte compatibility on polymorphic MnO2 cathodes for room-temperature rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2022, 14, 56685–56696.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, W. X.; Xiong, F. Y.; Zhu, S. H.; Chen, J. H.; Xie, J.; An, Q. Y. Defect engineering in molybdenum-based electrode materials for energy storage. eScience 2022, 2, 278–294.

    Article  Google Scholar 

  17. Tang, H.; Zuo, C. L.; Xiong, F. Y.; Pei, C. Y.; Tan, S. S.; Luo, P.; Yang, W.; An, Q. Y.; Mai, L. Q. Flexible three-dimensional-networked iron vanadate nanosheet arrays/carbon cloths as high-performance cathodes for magnesium ion batteries. Sci. China Mater. 2022, 65, 2197–2206.

    Article  CAS  Google Scholar 

  18. Fan, J. J.; Shen, S. Y.; Chen, Y.; Wu, L. N.; Peng, J.; Peng, X. X.; Shi, C. G.; Huang, L.; Lin, W. F.; Sun, S. G. A rechargeable Mg2+/Li+ hybrid battery based on sheet-like MoSe2/C nanocomposites cathode. Electrochem. Commun. 2018, 90, 16–20.

    Article  CAS  Google Scholar 

  19. Xu, J.; Wei, Z. N.; Zhang, S. K.; Wang, X. X.; Wang, Y. H.; He, M. Y.; Huang, K. J. Hierarchical WSe2 nanoflower as a cathode material for rechargeable Mg-ion batteries. J. Colloid Interface Sci. 2021, 588, 378–383.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, L. M.; Xiong, F. Y.; Tan, S. S.; An, Q. Y.; Wang, Z. Y.; Yang, W.; Tao, Z. L.; Yao, Y.; Chen, J.; Mai, L. Q. Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy 2018, 54, 360–366.

    Article  CAS  Google Scholar 

  21. Shen, T.; Luo, C. Z.; Hao, Y.; Chen, Y. Magnesiophilic interface of 3D MoSe2 for reduced Mg anode overpotential. Front. Chem. 2020, 8, 544013.

    Article  Google Scholar 

  22. Ding, Y. Y.; Chen, D.; Ren, X.; Cao, Y. L.; Xu, F. Organic-conjugated polyanthraquinonylimide cathodes for rechargeable magnesium batteries. J. Mater. Chem. A 2022, 10, 14111–14120.

    Article  CAS  Google Scholar 

  23. Yan, H.; Mu, X. J.; Song, Y.; Qin, Z. M.; Guo, D.; Sun, X. Q.; Liu, X. X. Protonating imine sites of polyaniline for aqueous zinc batteries. Chem. Commun. 2022, 58, 1693–1696.

    Article  CAS  Google Scholar 

  24. Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K.; Trivedi D. C. Polyaniline as an electrode material for magnesium reserve battery. Synth. Met. 1996, 80, 279–282.

    Article  CAS  Google Scholar 

  25. Luo, P.; Xiao, Y.; Yang, J.; Zuo, C. L.; Xiong, F. Y.; Tang, C.; Liu, G. Y.; Zhang, W. W.; Tang, W.; Wang, S. Y. et al. Polyaniline nanoarrays/carbon cloth as binder-free and flexible cathode for magnesium ion batteries. Chem. Eng. J. 2022, 433, 133772.

    Article  CAS  Google Scholar 

  26. Tang, J. J.; Xu, F. Polyaniline cathode for dual-ion rechargeable Mg batteries. Mater. Lett. 2022, 320, 132365.

    Article  CAS  Google Scholar 

  27. Zhou, L. M.; Liu, Q.; Zhang, Z. H.; Zhang, K.; Xiong, F. Y.; Tan, S. S.; An, Q. Y.; Kang, Y. M.; Zhou, Z.; Mai, L. Q. Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv. Mater. 2018, 30, 1801984.

    Article  Google Scholar 

  28. Pei, C. Y.; Yin, Y. M.; Sun, R. M.; Xiong, F. Y.; Liao, X. B.; Tang, H.; Tan, S. S.; Zhao, Y.; An, Q. Y.; Mai, L. Q. Interchain-expanded vanadium tetrasulfide with fast kinetics for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2019, 11, 31954–31961.

    Article  CAS  PubMed  Google Scholar 

  29. Dong, H.; Liang, Y. L.; Tutusaus, O.; Mohtadi, R.; Zhang, Y.; Hao, F.; Yao, Y. Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 2019, 3, 782–793.

    Article  CAS  Google Scholar 

  30. Huang, D.; Tan, S. S.; Li, M. S.; Wang, D. D.; Han, C. H.; An, Q. Y.; Mai, L. Q. Highly efficient non-nucleophilic Mg(CF3SO3)2-based electrolyte for high-power Mg/S battery. ACS Appl. Mater. Interfaces 2020, 12, 17474–17480.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, F.; Hua, H. M.; Wu, D. Z.; Li, J. L.; Xu, Y. Q.; Nie, X. Z.; Zhuang, Y. C.; Zeng, J.; Zhao, J. B. Solvent molecule design enables excellent charge transfer kinetics for a magnesium metal anode. ACS Energy Lett. 2023, 8, 780–789.

    Article  CAS  Google Scholar 

  32. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  34. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

    Article  CAS  Google Scholar 

  35. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  36. Singh, R.; Choudhary, R. B. Optical absorbance and ohmic behavior of PANI and PANI/ZnO nanocomposites for solar cell application. Optik 2016, 127, 11398–11405.

    Article  CAS  Google Scholar 

  37. Zhao, Z. G.; Yu, T. T.; Miao, Y. C.; Zhao, X. Y. Chloride ion-doped polyaniline/carbon nanotube nanocomposite materials as new cathodes for chloride ion battery. Electrochim. Acta 2018, 270, 30–36.

    Article  CAS  Google Scholar 

  38. Han, C. L.; Ye, Y. L.; Wang, G. W.; Hong, W.; Feng, C. H. Selective electro-oxidation of phenol to benzoquinone/hydroquinone on polyaniline enhances capacitance and cycling stability of polyaniline electrodes. Chem. Eng. J. 2018, 347, 648–659.

    Article  CAS  Google Scholar 

  39. Souza, F. G.; Pinto, J. C.; Rodrigues, M. V.; Anzai, T. K.; Richa, P.; Melo, P. A.; Nele, M.; Oliveira, G. E.; Soares, B. G. New polyaniline/polycardanol conductive blends characterized by FTIR, NIR, and XPS. Polym. Eng. Sci. 2008, 48, 1947–1952.

    Article  CAS  Google Scholar 

  40. Zhang, J. J.; Xu, Y. H.; Fan, L.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Graphene-encapsulated selenium/polyaniline core–shell nanowires with enhanced electrochemical performance for Li-Se batteries. Nano Energy 2015, 13, 592–600.

    Article  CAS  Google Scholar 

  41. Zhou, X. M.; Liu, Y.; Du, C. Y.; Ren, Y.; Mu, T. S.; Zuo, P. J.; Yin, G. P.; Ma, Y. L.; Cheng, X. Q.; Gao, Y. Z. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries. J. Power Sources 2018, 381, 156–163.

    Article  CAS  Google Scholar 

  42. Luo, P.; Huang, Z.; Zhang, W. W.; Liu, C.; Liu, G. Y.; Huang, M.; Xiao, Y.; Luo, H. Y.; Qu, Z.; Dong, S. J. et al. Incorporating near-pseudocapacitance insertion Ni/Co-based hexacyanoferrate and low-cost metallic Zn for aqueous K-ion batteries. ChemSusChem 2022, 15, e202200706.

    Article  CAS  PubMed  Google Scholar 

  43. Lei, T. Y.; Chen, W.; Lv, W. Q.; Huang, J. W.; Zhu, J.; Chu, J. W.; Yan, C. Y.; Wu, C. Y.; Yan, Y. C.; He, W. D. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091–2104.

    Article  CAS  Google Scholar 

  44. Lüder, J.; Manzhos, S. First-principle insights into molecular design for high-voltage organic electrode materials for Mg based batteries. Front. Chem. 2020, 8, 489209.

    Article  Google Scholar 

  45. Zuo, C. L.; Chao, F. Y.; Li, M.; Dai, Y. H.; Wang, J. J.; Xiong, F. Y.; Jiang, Y. L.; An, Q. Y. Improving Ca-ion storage dynamic and stability by interlayer engineering and Mn-dissolution limitation based on robust MnO2@PANI hybrid cathode. Adv. Energy Mater. 2023, 13, 2301014.

    Article  CAS  Google Scholar 

  46. Dimitriev, O. P. Origin of the exciton transition shift in thin films of polyaniline. Synth. Met. 2001, 125, 359–363.

    Article  Google Scholar 

  47. Wang, S.; Huang, S.; Yao, M. J.; Zhang, Y.; Niu, Z. Q. Engineering active sites of polyaniline for AlCl2+ storage in an aluminum-ion battery. Angew. Chem., Int. Ed. 2020, 59, 11800–11807.

    Article  CAS  Google Scholar 

  48. Long, J. C.; Tan, S. S.; Wang, J. J.; Xiong, F. Y.; Cui, L. M.; An, Q. Y.; Mai, L. Q. Revealing the interfacial chemistry of fluoride alkyl magnesium salts in magnesium metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202301934.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2023YFB3809501), the National Natural Science Foundation of China (No. 52302246), the Natural Science Foundation of Hubei Province (No. 2022CFA087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiujuan Wei or Qinyou An.

Electronic Supplementary Material

12274_2024_6615_MOESM1_ESM.pdf

Improving discharge voltage and ion storage dynamic in polyaniline via modulation of carrier charge density for magnesium-metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Chao, F., Zuo, C. et al. Improving discharge voltage and ion storage dynamic in polyaniline via modulation of carrier charge density for magnesium-metal batteries. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6615-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6615-4

Keywords

Navigation