Skip to main content
Log in

Unraveling the modulation essence of p bands in Co-based oxide stability on acidic oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The oxygen evolution reaction (OER) electrocatalysts, which can keep active for a long time in acidic media, are of great significance to proton exchange membrane water electrolyzers. Here, Ru-Co3O4 electrocatalysts with transition metal oxide Co3O4 as matrix and the noble metal Ru as doping element have been prepared through an ion exchange–pyrolysis process mediated by metal-organic framework, in which Ru atoms occupy the octahedral sites of Co3O4. Experimental and theoretical studies show that introduced Ru atoms have a passivation effect on lattice oxygen. The strong coupling between Ru and O causes a negative shift in the energy position of the O p-band centers. Therefore, the bonding activity of oxygen in the adsorbed state to the lattice oxygen is greatly passivated during the OER process, thus improving the stability of matrix material. In addition, benefiting from the modulating effect of the introduced Ru atoms on the metal active sites, the thermodynamic and kinetic barriers have been significantly reduced, which greatly enhances both the catalytic stability and reaction efficiency of Co3O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q. L.; Cheng, Y. Q.; Tao, H. B.; Liu, Y. H.; Ma, X. H.; Li, D. S.; Yang, H. B.; Liu, B. Long-term stability challenges and opportunities in acidic oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202216645.

    Article  CAS  Google Scholar 

  2. Lin, Y. C.; Dong, Y.; Wang, X. Z.; Chen, L. Electrocatalysts for the oxygen evolution reaction in acidic media. Adv. Mater. 2023, 35, 2210565.

    Article  CAS  Google Scholar 

  3. Liang, Z. J.; Shen, D.; Wang, L.; Fu, H. G. Recent progress of cobalt-based electrocatalysts for water splitting: Electron modulation, surface reconstitution, and applications. Nano Res. 2024, 17, 2234–2269

    Article  CAS  Google Scholar 

  4. An, L.; Wei, C.; Lu, M.; Liu, H. W.; Chen, Y. B.; Scherer, G. G.; Fisher, A. C.; Xi, P. X.; Xu, Z. J.; Yan, C. H. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 2021, 33, 2006328.

    Article  CAS  Google Scholar 

  5. Liu, M. M.; Zhang, C. Y.; Han, A. L.; Wang, L.; Sun, Y. J.; Zhu, C. N.; Li, R.; Ye, S. Modulation of morphology and electronic structure on MoS2-based electrocatalysts for water splitting. Nano Res. 2022, 15, 6862–6887.

    Article  CAS  Google Scholar 

  6. Yang, Y. F.; He, D.; Feng, X. B.; Xiao, X. H. Low-dimension confinement effect in COF-based hetero-photocatalyst for energy-conversion application. SmartMat 2023, e1223.

  7. Shan, J. Q.; Guo, C. X.; Zhu, Y. H.; Chen, S. M.; Song, L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media. Chem 2019, 5, 445–459.

    Article  CAS  Google Scholar 

  8. Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped ruir bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

    Article  Google Scholar 

  9. Liu, Z. J.; Wang, G. J.; Guo, J. Y.; Wang, S. Y.; Zang, S. Q. Sub-2 nm IrO2/Ir nanoclusters with compressive strain and metal vacancies boost water oxidation in acid. Nano Res. 2023, 16, 334–342.

    Article  CAS  Google Scholar 

  10. Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

    Article  CAS  Google Scholar 

  11. Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

    Article  Google Scholar 

  12. Wang, X. F.; Jang, H.; Liu, S. G.; Li, Z. J.; Zhao, X. H.; Chen, Y. F.; Kim, M. G.; Qin, Q.; Liu, X. E. Enhancing the catalytic kinetics and stability of Ru sites for acidic water oxidation by forming Brønsted acid sites in tungsten oxide matrix. Adv. Energy Mater. 2023, 13, 2301673.

    Article  CAS  Google Scholar 

  13. Zhu, Y. M.; Wang, J. A.; Koketsu, T.; Kroschel, M.; Chen, J. M.; Hsu, S. Y.; Henkelman, G.; Hu, Z. W.; Strasser, P.; Ma, J. W. Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions. Nat. Commun. 2022, 13, 7754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, C.; Li, J. L.; Li, X. P.; Yang, S.; Luo, W.; Zhang, Y. J.; Kim, S. H.; Kim, D. H.; Shinde, S. S.; Li, Y. F. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012–1023.

    Article  CAS  Google Scholar 

  15. Zhang, Z. Y.; Tan, Y. Y.; Zeng, T.; Yu, L. Y.; Chen, R. Z.; Cheng, N. C.; Mu, S. C.; Sun, X. L. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res. 2021, 14, 2353–2362.

    Article  CAS  Google Scholar 

  16. Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.

    Article  CAS  PubMed  Google Scholar 

  17. Tripathy, S. K.; Christy, M.; Park, N. H.; Suh, E. K.; Anand, S.; Yu, Y. T. Hydrothermal synthesis of single-crystalline nanocubes of Co3O4. Mater. Lett. 2008, 62, 1006–1009.

    Article  CAS  Google Scholar 

  18. Hadjiev, V. G.; Iliev, M. N.; Vergilov, I. V. The Raman spectra of Co3O4. J. Phys. C: Solid State Phys. 1988, 21, L199–L201.

    Article  Google Scholar 

  19. Zhao, Q.; Yan, Z. H.; Chen, C. C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211.

    Article  CAS  PubMed  Google Scholar 

  20. Guan, D. Q.; Ryu, G.; Hu, Z. W.; Zhou, J.; Dong, C. L.; Huang, Y. C.; Zhang, K. F.; Zhong, Y. J.; Komarek, A. C.; Zhu, M. et al. Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. Nat. Commun. 2020, 11, 3376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo, X. L.; Wang, L. L.; Tan, Y. W. Hematite nanorods Co-doped with Ru cations with different valence states as high performance photoanodes for water splitting. Nano Energy 2015, 16, 320–328.

    Article  CAS  Google Scholar 

  22. Susanti, D.; Tsai, D. S.; Huang, Y. S.; Korotcov, A.; Chung, W. H. Structures and electrochemical capacitive properties of RuO2 vertical nanorods encased in hydrous RuO2. J. Phys. Chem. C 2007, 111, 9530–9537.

    Article  CAS  Google Scholar 

  23. Zhang, Y. D.; Wang, Q. Y.; Yang, S. K.; Wang, H. W.; Rao, D. W.; Chen, T.; Wang, G. M.; Lu, J. L.; Zhu, J. F.; Wei, S. Q. et al. Tuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation. Adv. Funct. Mater. 2022, 32, 2112452.

    Article  CAS  Google Scholar 

  24. Over, H.; Seitsonen, A. P.; Lundgren, E.; Smedh, M.; Andersen, J. N. On the origin of the Ru-3d5/2 satellite feature from RuO2(110). Surf. Sci. 2002, 504, L196–L200.

    Article  CAS  Google Scholar 

  25. In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution. Nat. Commun. 2023, 14, 1720.

  26. Reuter, K.; Scheffler, M. Surface core-level shifts at an oxygen-rich Ru surface: O/Ru(0001) vs. RuO2(110). Surf. Sci. 2001, 490, 20–28.

    Article  CAS  Google Scholar 

  27. Ren, F. F.; Xu, J. Y.; Feng, L. G. An effective bimetallic oxide catalyst of RuO2-Co3O4 for alkaline overall water splitting. Nano Res. 2024, 17, 3785–3793.

    Article  CAS  Google Scholar 

  28. Tung, C. W.; Hsu, Y. Y.; Shen, Y. P.; Zheng, Y. X.; Chan, T. S.; Sheu, H. S.; Cheng, Y. C.; Chen, H. M. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 2015, 6, 8106.

    Article  CAS  PubMed  Google Scholar 

  29. Li, H. F.; Lu, G. Z.; Dai, Q. G.; Wang, Y. Q.; Guo, Y.; Guo, Y. L. Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Appl. Catal. B: Environ. 2011, 102, 475–483.

    Article  CAS  Google Scholar 

  30. Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

    Article  CAS  PubMed  Google Scholar 

  31. Li, A. L.; Ooka, H.; Bonnet, N.; Hayashi, T.; Sun, Y. M.; Jiang, Q. K.; Li, C.; Han, H. X.; Nakamura, R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew. Chem., Int. Ed. 2019, 58, 5054–5058.

    Article  CAS  Google Scholar 

  32. Liang, H. F.; Cao, Z.; Xia, C.; Ming, F. W.; Zhang, W. L.; Emwas, A. H.; Cavallo, L.; Alshareef, H. N. Tungsten blue oxide as a reusable electrocatalyst for acidic water oxidation by plasma-induced vacancy engineering. CCS Chem. 2021, 3, 1553–1561.

    Article  CAS  Google Scholar 

  33. Yang, X. L.; Li, H. N.; Lu, A. Y.; Min, S. X.; Idriss, Z.; Hedhili, M. N.; Huang, K. W.; Idriss, H.; Li, L. J. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy 2016, 25, 42–50.

    Article  CAS  Google Scholar 

  34. Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

    Article  CAS  PubMed  Google Scholar 

  35. Chivot, J.; Mendoza, L.; Mansour, C.; Pauporté, T.; Cassir, M. New insight in the behaviour of Co-H2O system at 25–150 °C, based on revised Pourbaix diagrams. Corros. Sci. 2008, 50, 62–69.

    Article  CAS  Google Scholar 

  36. Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

    Article  CAS  PubMed  Google Scholar 

  37. Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521–13530.

    Article  CAS  PubMed  Google Scholar 

  38. Chen, H.; Shi, L.; Sun, K.; Zhang, K. X.; Liu, Q.; Ge, J. J.; Liang, X.; Tian, B. Y.; Huang, Y. L.; Shi, Z. P. et al. Protonated iridate nanosheets with a highly active and stable layered perovskite framework for acidic oxygen evolution. ACS Catal. 2022, 12, 8658–8666.

    Article  CAS  Google Scholar 

  39. Stoerzinger, K. A.; Diaz-Morales, O.; Kolb, M.; Rao, R. R.; Frydendal, R.; Qiao, L.; Wang, X. R.; Halck, N. B.; Rossmeisl, J.; Hansen, H. A. et al. Orientation-dependent oxygen evolution on RuO2 without lattice exchange. ACS Energy Lett. 2017, 2, 876–881.

    Article  CAS  Google Scholar 

  40. Huang, Z. F.; Xi, S. B.; Song, J. J.; Dou, S.; Li, X. G.; Du, Y. H.; Diao, C. Z.; Xu, Z. J.; Wang, X. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 2021, 12, 3992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, J.; He, D.; Chen, R.; Xu, H.; Wang, H. B.; Yang, M. H.; Zhang, Q.; Jiang, C. Z.; Li, W. Q.; Ouyang, X. P. et al. Low operating voltage memtransistors based on ion bombarded p-type GeSe nanosheets for artificial synapse applications. InfoMat 2023, 5, e12476.

    Article  CAS  Google Scholar 

  42. Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    Article  CAS  Google Scholar 

  44. Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 12025503, U23B2072, and 12105208). The authors would like to acknowledge the beamlines BL20U in the Shanghai Synchrotron Radiation Facility (SSRF). The authors acknowledge the Super-computing Center of Wuhan University and University of Science and Technology of China for the numerical calculations support. We also acknowledge the Center for Electron Microscopy at Wuhan University for their substantial supports to JEM-F200.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong He, Xiaobo Feng or Xiangheng Xiao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xu, Y., Liu, H. et al. Unraveling the modulation essence of p bands in Co-based oxide stability on acidic oxygen evolution reaction. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6593-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6593-6

Keywords

Navigation