Skip to main content
Log in

Structural and chemical transformations of CuZn alloy nanoparticles under reactive redox atmospheres: An in situ TEM study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Alloying metals to form intermetallics has been proven effective in tuning the chemical properties of metal-based catalysts. However, intermetallic alloys can undergo structural and chemical transformations under reactive conditions, leading to changes in their catalytic function. Elucidating and understanding these transformations are crucial for establishing relevant structure-performance relationships and for the rational design of alloy-based catalysts. In this work, we used CuZn alloy nanoparticles (NPs) as a model material system and employed in situ transmission electron microscopy (TEM) to investigate the structural and chemical changes of CuZn NPs under H2, O2 and their mixture. Our results show how CuZn NPs undergo sequential transformations in the gas mixture at elevated temperatures, starting with gradual leaching and segregation of Zn, followed by oxidation at the NP surface. The remaining copper at the core of particles can then engage in dynamic behavior, eventually freeing itself from the zinc oxide shell. The structural dynamics arises from an oscillatory phase transition between Cu and Cu2O and is correlated with the catalytic water formation, as confirmed by in situ mass spectrometry (MS). Under pure H2 or O2 atmosphere, we observe different structural evolution pathways and final chemical states of CuZn NPs compared to those in the gas mixture. These results clearly demonstrate that the chemical state of alloy NPs can vary considerably under reactive redox atmospheres, particularly for those containing elements with distinct redox properties, necessitating the use of in situ or detailed ex situ characterizations to gain relevant insights into the states of intermetallic alloy-based catalysts and structure-activity relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.

    Article  CAS  PubMed  Google Scholar 

  2. Luneau, M.; Guan, E. J.; Chen, W.; Foucher, A. C.; Marcella, N.; Shirman, T.; Verbart, D. M. A.; Aizenberg, J.; Aizenberg, M.; Stach, E. A. et al. Enhancing catalytic performance of dilute metal alloy nanomaterials. Commun. Chem. 2020, 3, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

    Article  CAS  PubMed  Google Scholar 

  4. Luneau, M.; Lim, J. S.; Patel, D. A.; Sykes, E. C. H.; Friend, C. M.; Sautet, P. Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: A review. Chem. Rev. 2020, 120, 12834–12872.

    Article  CAS  PubMed  Google Scholar 

  5. Chia, S. R.; Nomanbhay, S.; Ong, M. Y.; Chew, K. W.; Khoo, K. S.; Karimi-Maleh, H.; Show, P. L. Recent development of renewable diesel production using bimetallic catalysts. Front. Energy Res. 2021, 9, 769485.

    Article  Google Scholar 

  6. Luo, L. L.; Li, L.; Schreiber, D. K.; He, Y.; Baer, D. R.; Bruemmer, S. M.; Wang, C. M. Deciphering atomistic mechanisms of the gassolid interfacial reaction during alloy oxidation. Sci. Adv. 2020, 6, eaay8491.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, J.; Choi, H.; Kim, D.; Park, J. Y. Operando surface studies on metal-oxide interfaces of bimetal and mixed catalysts. ACS Catal. 2021, 11, 8645–8677.

    Article  CAS  Google Scholar 

  8. Zhang, Y. B.; Pan, J. A.; Gong, G.; Song, R. X.; Yuan, Y.; Li, M. Z.; Hu, W. F.; Fan, P. C.; Yuan, L. X.; Wang, L. L. In situ surface reconstruction of catalysts for enhanced hydrogen evolution. Catalysts 2023, 13, 120

    Article  CAS  Google Scholar 

  9. van den Berg, R.; Prieto, G.; Korpershoek, G.; van der Wal, L. I.; van Bunningen, A. J.; Lœgsgaard-Jørgensen, S.; de Jongh, P. E.; de Jong, K. P. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nat. Commun. 2016, 7, 13057.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Renzas, J. R.; Huang, W. Y.; Zhang, Y. W.; Grass, M. E.; Hoang, D. T.; Alayoglu, S.; Butcher, D. R.; Tao, F.; Liu, Z.; Somorjai, G. A. Rh1-xPdx nanoparticle composition dependence in CO oxidation by oxygen: Catalytic activity enhancement in bimetallic systems. Phys. Chem. Chem. Phys. 2011, 13, 2556–2562.

    Article  CAS  PubMed  Google Scholar 

  11. Großmann, D.; Klementiev, K.; Sinev, I.; Gr⋼nert, W. Surface alloy or metal-cation interaction-the state of Zn promoting the active Cu sites in methanol synthesis catalysts. CeemCatCeem 2017, 9, 365–372.

    Article  Google Scholar 

  12. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; Disalvo, F. J.; Abruna, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Holse, C.; Elkjør, C. F.; Nierhoff, A.; Sehested, J.; Chorkendorff, I.; Helveg, S.; Nielsen, J. H. Dynamic behavior of CuZn nanoparticles under oxidizing and reducing conditions. J. Phys. Chem. C 2015, 119, 2804–2812.

    Article  CAS  Google Scholar 

  14. Simonovis, J. P.; Hunt, A.; Palomino, R. M.; Senanayake, S. D.; Waluyo, I. Enhanced stability of Pt-Cu single-atom alloy catalysts: In situ characterization of the Pt/Cu(111) surface in an ambient pressure of CO. J. Phys. Chem. C 2018, 122, 4488–4495.

    Article  CAS  Google Scholar 

  15. Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Chee, S. W.; Lunkenbein, T.; Schlögl, R.; Cuenya, B. R. In situ and operando electron microscopy in heterogeneous catalysis-insights into multi-scale chemical dynamics. J. Phys.: Condens. Matter 2021, 33, 153001.

    CAS  Google Scholar 

  17. Tang, M.; Yuan, W. T.; Ou, Y.; Li, G. X.; You, R. Y.; Li, S. D.; Yang, H. S.; Zhang, Z.; Wang, Y. Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: A review. ACS Catal. 2020, 10, 14419–14450.

    Article  CAS  Google Scholar 

  18. Tao, F.; Crozier, P. A. Atomic- scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487–3539.

    Article  CAS  PubMed  Google Scholar 

  19. Kalz, K. F.; Kraehnert, R.; Dvoyashkin, M.; Dittmeyer, R.; Gläser, R.; Krewer, U.; Reuter, K.; Grunwaldt, J. D. Future challenges in heterogeneous catalysis: Understanding catalysts under dynamic reaction conditions. ChemCatChem 2017, 9, 17–29.

    Article  CAS  PubMed  Google Scholar 

  20. Newton, M. A. Dynamic adsorbate/reaction induced structural change of supported metal nanoparticles: Heterogeneous catalysis and beyond. Chem. Soc. Rev. 2008, 37, 2644–2657.

    Article  CAS  PubMed  Google Scholar 

  21. Foucher, A. C.; Marcella, N.; Lee, J. D.; Tappero, R.; Murray, C. B.; Frenkel, A. I.; Stach, E. A. Dynamical change of valence states and structure in NiCu3 nanoparticles during redox cycling. J. Phys. Chem. C 2022, 126, 1991–2002.

    Article  CAS  Google Scholar 

  22. Wang, C. M.; Genc, A.; Cheng, H. K.; Pullan, L.; Baer, D. R.; Bruemmer, S. M. In situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles. Sci. Rep. 2014, 4, 3683

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guan, Y. Y.; Liu, Y. T.; Ren, Q. Y.; Dong, Z. J.; Luo, L. L. Oxidation-induced phase separation of carbon-supported CuAu nanoparticles for electrochemical reduction of CO2. Nano Res. 2023, 16, 2119–2125.

    Article  ADS  CAS  Google Scholar 

  24. Luo, L. L.; Su, M.; Yan, P. F.; Zou, L. F.; Schreiber, D. K.; Baer, D. R.; Zhu, Z. H.; Zhou, G. W.; Wang, Y. T.; Bruemmer, S. M. et al. Atomic origins of water-vapour-promoted alloy oxidation. Nat. Mater. 2018, 17, 514–518.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhang, X. B.; Han, S. B.; Zhu, B. E.; Zhang, G. H.; Li, X. Y.; Gao, Y.; Wu, Z. X.; Yang, B.; Liu, Y. F.; Baaziz, W. et al. Author correction: Reversible loss of core-shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2021, 4, 180.

    Article  Google Scholar 

  26. Moscu, A.; Theodoridi, C.; Cardenas, L.; Thieuleux, C.; Motta-Meira, D.; Agostini, G.; Schuurman, Y.; Meunier, F. CO dissociation on Pt-Sn nanoparticles triggers Sn oxidation and alloy segregation. J. Catal. 2018, 359, 76–81.

    Article  CAS  Google Scholar 

  27. Gao, F.; Wang, Y. L.; Goodman, D. W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: CO adsorption-induced surface segregation and reaction kinetics. J. Phys. Chem. C 2009, 113, 14993–15000.

    Article  CAS  Google Scholar 

  28. Yasuhara, A.; Homma, M.; Sannomiya, T. In situ observation of structural and optical changes of phase-separated Ag-Cu nanoparticles during a dewetting process via transmission electron microscopy. ACS Appl. Mater. Interfaces 2022, 14, 35020–35026.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, P. C.; Gao, M. Y.; Yu, S.; Jin, J. B.; Song, C. Y.; Salmeron, M.; Scott, M. C.; Yang, P. D. Revealing the phase separation behavior of thermodynamically immiscible elements in a nanoparticle. Nano Lett. 2021, 21, 6684–6689.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zafeiratos, S.; Piccinin, S.; Teschner, D. Alloys in catalysis: Phase separation and surface segregation phenomena in response to the reactive environment. Catal. Sci. Technol. 2012, 2, 1787–1801.

    Article  CAS  Google Scholar 

  31. Tisseraud, C.; Comminges, C.; Habrioux, A.; Pronier, S.; Pouilloux, Y.; Le Valant, A. Cu- ZnO catalysts for CO2 hydrogenation to methanol: Morphology change induced by ZnO lixiviation and its impact on the active phase formation. Mol. Catal. 2018, 446, 98–105.

    Article  CAS  Google Scholar 

  32. Frey, H.; Beck, A.; Huang, X.; van Bokhoven, J. A.; Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022, 376, 982–987.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Yuan, W. T.; Zhu, B. E.; Fang, K.; Li, X. Y.; Hansen, T. W.; Ou, Y.; Yang, H. S.; Wagner, J. B.; Gao, Y.; Wang, Y. et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation. Science 2021, 371, 517–521

    Article  ADS  CAS  PubMed  Google Scholar 

  34. He, B. W.; Zhang, Y. X.; Liu, X.; Chen, L. W. In situ transmission electron microscope techniques for heterogeneous catalysis. ChemCatChem 2020, 12, 1853–1872

    Article  CAS  Google Scholar 

  35. Huang, X.; Beck, A.; Fedorov, A.; Frey, H.; Zhang, B. S.; Klötzer, B.; van Bokhoven, J. A.; Copéret, C.; Willinger, M. G. Visualizing structural and chemical transformations of an industrial Cu/ZnO/Al2O3 pre- catalyst during activation and CO2 reduction. ChemCatChem 2022, 14, e202201280.

    Article  CAS  Google Scholar 

  36. Niu, Y. M.; Wang, Y. Z.; Chen, J. N.; Li, S. Y.; Huang, X.; Willinger, M. G.; Zhang, W.; Liu, Y. F.; Zhang, B. S. Patterning the consecutive Pd3 to Pd1 on Pd2Ga surface via temperature-promoted reactive metal-support interaction. Sci. Adv. 2022, 8, eabq5751.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, X.; Cheng, S. B.; He, Y. H.; Qian, L. X.; Zakharov, D.; Wu, G.; Shan, C. X.; Zhang, L.; Su, D. Revealing the dynamics of the alloying and segregation of Pt-Co nanoparticles via in-situ environmental transmission electron microscopy. Nano Res. 2023, 16, 3055–3062.

    Article  ADS  Google Scholar 

  38. Liu, P. P.; Klyushin, A.; Chandramathy Surendran, P.; Fedorov, A.; Xie, W. J.; Zeng, C. B.; Huang, X. Carbon encapsulation of supported metallic Iridium nanoparticles: An in situ transmission electron microscopy study and implications for hydrogen evolution reaction. ACS Nano 2023, 17, 24395–24403.

    Article  CAS  PubMed  Google Scholar 

  39. Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollär, J. The surface energy of metals. Surf. Sci. 1998, 411, 186–202.

    Article  ADS  CAS  Google Scholar 

  40. Takrori, F. M.; Ayyad, A. Surface energy of metal alloy nanoparticles. Appl. Surf. Sci. 2017, 401, 65–68.

    Article  ADS  CAS  Google Scholar 

  41. Kattel, S.; Ramirez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Divins, N. J.; Kordus, D.; Timoshenko, J.; Sinev, I.; Zegkinoglou, I.; Bergmann, A.; Chee, S. W.; Widrinna, S.; Karslioğlu, O.; Mistry, H. et al. Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction. Nat. Commun. 2021, 12, 1435.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Behrens, M.; Studt, F.; Kasatkin, I.; K⋼hl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjør, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Scincee 2016, 352, 969–974.

    Article  ADS  CAS  Google Scholar 

  45. Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlögl, R.; Willinger, M. G. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions. Angew. Chem. 2015, 127, 4627–4631.

    Article  ADS  Google Scholar 

  46. Beck, A.; Zabilskiy, M.; Newton, M. A.; Safonova, O.; Willinger, M. G.; van Bokhoven, J. A. Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation. Nat. Catal. 2021, 4, 488–497.

    Article  CAS  Google Scholar 

  47. Bhaskar, S. P.; Jagirdar, B. R. A journey from bulk brass to nanobrass: A comprehensive study showing structural evolution of various Cu/Zn bimetallic nanophases from the vaporization of brass. J. Alloys Compd. 2017, 694, 581–595.

    Article  CAS  Google Scholar 

  48. LaGrow, A. P.; Ward, M. R.; Lloyd, D. C.; Gai, P. L.; Boyes, E. D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 2017, 139, 179–185.

    Article  CAS  PubMed  Google Scholar 

  49. Dong, Z. J.; Liu, W.; Zhang, L. F.; Wang, S. B.; Luo, L. L. Structural evolution of Cu/ZnO catalysts during water-gas shift reaction: An in situ transmission electron microscopy study. ACS Appl. Mater. Interfaces 2021, 13, 41707–41714.

    Article  CAS  PubMed  Google Scholar 

  50. Huang, X.; Jones, T.; Fedorov, A.; Farra, R.; Copéret, C.; Schlögl, R.; Willinger, M. G. Phase coexistence and structural dynamics of redox metal catalysts revealed by operando TEM. Adv. Mater. 2021, 33, 2101772.

    Article  CAS  Google Scholar 

  51. Fan, H. J.; Gösele, U.; Zacharias, M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review. Small 2007, 3, 1660–1671.

    Article  CAS  PubMed  Google Scholar 

  52. Railsback, J. G.; Johnston-Peck, A. C.; Wang, J. W.; Tracy, J. B. Size-dependent nanoscale Kirkendall effect during the oxidation of nickel nanoparticles. ACS Nano 2010, 4, 1913–1920.

    Article  CAS  PubMed  Google Scholar 

  53. You, R. Y.; Ou, Y.; Qi, R.; Yu, J.; Wang, F.; Jiang, Y.; Zou, S. H.; Han, Z. K.; Yuan, W. T.; Yang, H. S. et al. Revealing temperature-dependent oxidation dynamics of Ni nanoparticles via ambient pressure transmission electron microscopy. Nano Lett. 2023, 23, 7260–7266.

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Ghijsen, J.; Tjeng, L. H.; van Elp, J.; Eskes, H.; Westerink, J.; Sawatzky, G. A.; Czyzyk, M. T. Electronic structure of Cu2O and CuO. Phys. Rev. B 1988, 38, 11322–11330.

    Article  ADS  CAS  Google Scholar 

  55. Mosrati, J.; Ishida, T.; Mac, H.; Al-Yusufi, M.; Honma, T.; Parliniska-Wojtan, M.; Kobayashi, Y.; Klyushin, A.; Murayama, T.; Abdel-Mageed, A. M. Low- temperature hydrogenation of CO2 to methanol in water on ZnO-supported CuAu nanoalloys. Angew. Chem., Int. Ed. 2023, 62, e202311340.

    Article  CAS  Google Scholar 

  56. Jirka, I. An ESCA study of copper clusters on carbon. Surf. Sci. 1990, 232, 307–315.

    Article  ADS  CAS  Google Scholar 

  57. Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.

    Article  ADS  CAS  Google Scholar 

  58. Biesinger, M. C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334.

    Article  CAS  Google Scholar 

  59. Biesinger, M. C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 153681.

    Article  CAS  Google Scholar 

  60. Hantsche, H. High resolution XPS of organic polymers, the scienta ESCA300 database. By G. Beamson and D. Briggs, Wiley, Chichester 1992, 295 pp., hardcover, £ 65.00, ISBN 0-471-93592-1. Adv. Mater. 1993, 5, 778.

    Article  Google Scholar 

  61. Kamarulzaman, N.; Kasim, M. F.; Chayed, N. F. Elucidation of the highest valence band and lowest conduction band shifts using XPS for ZnO and Zn0.99Cu0.01O band gap changes. Results Phys. 2016, 6, 217–230.

    Article  ADS  Google Scholar 

  62. Morozov, I. G.; Belousova, O. V.; Ortega, D.; Mafina, M. K.; Kuznetcov, M. V. Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles. J. Alloys Compd. 2015, 633, 237–245.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge MAX IV Laboratory for time on Beamline HIPPIE under 20230099 agreements. Research conducted at MAX IV, a Swedish national user facility, is supported by the Swedish Research council under contract 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-04969, and Formas under contract 2019-02496. X. H. thanks 1000 talent youth project, Fuzhou University and Qingyuan Innovation Laboratory for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, S., Li, Q., Zeng, C. et al. Structural and chemical transformations of CuZn alloy nanoparticles under reactive redox atmospheres: An in situ TEM study. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6538-0

Keywords

Navigation