Skip to main content
Log in

Efficient electrocatalytic reduction of nitrate to ammonia at low concentration by copper-cobalt oxide nanowires with shell–core structure

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic nitrate reduction to ammonia (NO3RR) for removing nitrate from wastewater is a promising but challengeable technology that is increasingly studied. Herein, we developed an efficient CuOx and CoCuOx composed hybrid catalyst (CoCuOx@CuOx/copper foam (CF)), characteristic of distinctive shell–core nanowires grown on CF substrate with CuOx core and CoCuOx shell. The built-in electric field formed at the interface of the CoO/Cu2O heterostructure promotes NO3 adsorption by modulating the charge distribution at the interface, which greatly improves the ammonia yield rate and Faradaic efficiency. At −0.2 V vs. reversible hydrogen electrode (RHE), CoCuOx@CuOx/CF achieves not only an excellent ammonia yield rate of up to 519.1 µg·h−1·cm−2 and Faradaic efficiency of 99.83% at 1 mM NO3 concentration, but also excellent mechanical stabilities. This study provides a novel pathway to design electrocatalyst for the removal of nitrate from dilute nitric acid solutions (≤ 2 mM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, C. Q.; Huang, X.; Chen, H.; Godfray, H. C. J.; Wright, J. S.; Hall, J. W.; Gong, P.; Ni, S. Q.; Qiao, S. C.; Huang, G. R. et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520.

    Article  CAS  PubMed  Google Scholar 

  2. Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2020, 31, 2008533.

    Article  Google Scholar 

  3. Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.

    Article  CAS  Google Scholar 

  4. Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate—A step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.

    Article  CAS  PubMed  Google Scholar 

  5. Clark, C. A.; Reddy, C. P.; Xu, H.; Heck, K. N.; Luo, G. H.; Senftle, T. P.; Wong, M. S. Mechanistic insights into pH-controlled nitrite reduction to ammonia and hydrazine over rhodium. ACS Catal. 2020, 10, 494–509.

    Article  CAS  Google Scholar 

  6. Wang, P. K.; Chang, F.; Gao, W. B.; Guo, J. P.; Wu, G. T.; He, T.; Chen, P. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64–70.

    Article  CAS  PubMed  Google Scholar 

  7. Clark, R. M.; Ehreth, D. J.; Convery, J. J. Water legislation in the U.S.: An overview of the safe drinking water act. Toxicol. Ind. Health 1991, 7, 43–52.

    Article  CAS  PubMed  Google Scholar 

  8. Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, Y. L.; Liu, Y.; Zhang, Z. J.; Mo, Z. K.; Wang, C. Y.; Gao, S. Y. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.

    Article  CAS  Google Scholar 

  10. Stirling, A.; Papai, I.; Mink, J.; Salahub, D. R. Density functional study of nitrogen oxides. J. Chem. Phys. 1994, 100, 2910–2923.

    Article  CAS  Google Scholar 

  11. Lim, J.; Liu, C. Y.; Park, J.; Liu, Y. H.; Senftle, T. P.; Lee, S. W.; Hatzell, M. C. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal. 2021, 11, 7568–7577.

    Article  CAS  Google Scholar 

  12. Lim, J.; Fernández, C. A.; Lee, S. W.; Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 2021, 6, 3676–3685.

    Article  CAS  Google Scholar 

  13. Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

    Article  CAS  PubMed  Google Scholar 

  14. Theerthagiri, J.; Park, J.; Das, H. T.; Rahamathulla, N.; Cardoso, E. S. F.; Murthy, A. P.; Maia, G.; Vo, D. V. N.; Choi, M. Y. Electrocatalytic conversion of nitrate waste into ammonia: A review. Environ. Chem. Lett. 2022, 20, 2929–2949.

    Article  CAS  Google Scholar 

  15. Wu, K. M.; Sun, C. C.; Wang, Z. N.; Song, Q.; Bai, X. X.; Yu, X.; Li, Q.; Wang, Z.; Zhang, H.; Zhang, J. et al. Surface reconstruction on uniform Cu nanodisks boosted electrochemical nitrate reduction to ammonia. ACS Mater. Lett. 2022, 4, 650–656.

    Article  CAS  Google Scholar 

  16. Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2019, 2, 377–380.

    Article  CAS  Google Scholar 

  17. Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren, Y. W.; Yu, C.; Tan, X. Y.; Wei, Q. B.; Wang, Z.; Ni, L.; Wang, L. S.; Qiu, J. S. Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: Current status, challenges, and perspectives. Energy Environ. Sci. 2022, 15, 2776–2805.

    Article  CAS  Google Scholar 

  19. Choi, J.; Du, H. L.; Nguyen, C. K.; Suryanto, B. H. R.; Simonov, A. N.; MacFarlane, D. R. Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: A potential source of ammonia in dinitrogen reduction studies. ACS Energy Lett. 2020, 5, 2095–2097.

    Article  CAS  Google Scholar 

  20. He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.

    Article  CAS  PubMed  Google Scholar 

  22. Daiyan, R.; Tran-Phu, T.; Kumar, P.; Iputera, K.; Tong, Z. Z.; Leverett, J.; Khan, M. H. A.; Asghar Esmailpour, A.; Jalili, A.; Lim, M. et al. Nitrate reduction to ammonium: From CuO defect engineering to waste NOx-to-NH3 economic feasibility. Energy Environ. Sci. 2021, 14, 3588–3598.

    Article  CAS  Google Scholar 

  23. Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere- level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

    Article  CAS  Google Scholar 

  25. Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. C.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.

    Article  CAS  Google Scholar 

  27. van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.

    Article  Google Scholar 

  28. Jing, J. F.; Yang, J.; Li, W. L.; Wu, Z. H.; Zhu, Y. F. Construction of interfacial electric field via dual-porphyrin heterostructure boosting photocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2106807.

    Article  CAS  Google Scholar 

  29. Ren, Y. L.; Ma, Y. J.; Wang, B.; Chang, S. Z.; Zhai, Q. X.; Wu, H.; Dai, Y. M.; Yang, Y. R.; Tang, S. C.; Meng, X. K. Furnishing continuous efficient bidirectional polysulfide conversion for long-life and high-loading lithium-sulfur batteries via the built-in electric field. Small 2023, 19, 2300065.

    Article  CAS  Google Scholar 

  30. Zhang, S.; Liu, Y.; Ma, R.; Jia, D. S.; Wen, T.; Ai, Y. J.; Zhao, G. X.; Fang, F.; Hu, B. W.; Wang, X. K. Molybdenum(VI)-oxo clusters incorporation activates g-C3N4 with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance. Adv. Funct. Mater. 2022, 32, 2204175.

    Article  CAS  Google Scholar 

  31. Wang, H. J.; Guo, Y. N.; Li, C. J.; Yu, H. J.; Deng, K.; Wang, Z. Q.; Li, X. N.; Xu, Y.; Wang, L. Cu/CuOx in-plane heterostructured nanosheet arrays with rich oxygen vacancies enhance nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 34761–34769.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, S. L.; Cui, L.; Yin, S. L.; Ren, H.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Heterointerface-triggered electronic structure reformation: Pd/CuO nano-olives motivate nitrite electroreduction to ammonia. Appl. Catal. B: Environ. 2022, 319, 121876.

    Article  CAS  Google Scholar 

  33. Ye, S. H.; Chen, Z. D.; Zhang, G. K.; Chen, W. D.; Peng, C.; Yang, X. Y.; Zheng, L. R.; Li, Y. L.; Ren, X. Z.; Cao, H. Q. et al. Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 2022, 15, 760–770.

    Article  CAS  Google Scholar 

  34. Deng, X. H.; Yang, Y. P.; Wang, L.; Fu, X. Z.; Luo, J. L. Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A·cm2. Adv. Sci. 2021, 8, 2004523.

    Article  CAS  Google Scholar 

  35. Xu, X.; Hu, L.; Li, Z. R.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Li, J.; Luo, Y. S.; Yan, X. D.; Hamdy, M. S. et al. Oxygen vacancies in Co3O4 nanoarrays promote nitrate electroreduction for ammonia synthesis. Sustain. Energy Fuels 2022, 6, 4130–4136.

    Article  CAS  Google Scholar 

  36. Chen, Q. R.; Liang, J.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A.; Li, T. S.; Guo, H. R.; Sun, X. P. CoO nanoparticle decorated N-doped carbon nanotubes: A high-efficiency catalyst for nitrate reduction to ammonia. Chem. Commun. 2022, 58, 5901–5904.

    Article  CAS  Google Scholar 

  37. Wang, T. H.; Huang, Z. F.; Liu, T. Y.; Tao, L.; Tian, J.; Gu, K. Z.; Wei, X. X.; Zhou, P.; Gan, L.; Du, S. Q. et al. Taansfbrming electrocatalytic biomass upgrading and hydrogen production from electricity input to electricity output. Angew. Chem., Int. Ed. 2022, 61, e202115636.

    Article  CAS  Google Scholar 

  38. Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

    Article  CAS  PubMed  Google Scholar 

  39. Xue, Q.; Bai, J.; Han, C. C.; Chen, P.; Jiang, J. X.; Chen, Y. Au nanowires@Pd-polyethylenimine nanohybrids as highly active and methanol-tolerant electrocatalysts toward oxygen reduction reaction in alkaline media. ACS Catal. 2018, 8, 11287–11295.

    Article  CAS  Google Scholar 

  40. Zhou, W. L.; Wang, X. Y.; Shan, J. W.; Yue, L. G.; Lu, D. Z.; Chen, L.; Zhang, J. C.; Li, Y. Y. Engineering hollow core-shell heterostructure box to induce interfacial charge modulation for promoting bidirectional sulfur conversion in lithium-sulfur batteries. J. Energy Chem. 2023, 80, 128–139.

    Article  CAS  Google Scholar 

  41. Liang, Y. T.; Zeng, Y. X.; Tang, X. F.; Xia, W.; Song, B.; Yao, F. B.; Yang, Y.; Chen, Y. S.; Peng, C. X.; Zhou, C. Y. et al. One-step synthesis of Cu(OH)2-Cu/Ni foam cathode for electrochemical reduction of nitrate. Chem. Eng. J. 2023, 451, 138936.

    Article  CAS  Google Scholar 

  42. Wang, Z.; Sun, C. C.; Bai, X. X.; Wang, Z. N.; Yu, X.; Tong, X.; Wang, Z.; Zhang, H.; Pang, H. L.; Zhou, L. J. et al. Facile synthesis of carbon nanobelts decorated with Cu and Pd for nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 30969–30978.

    Article  CAS  PubMed  Google Scholar 

  43. Yue, Q.; Gao, T. T.; Yuan, H. Y.; Xiao, D. An efficient way to improve water splitting electrocatalysis by electrodepositing cobalt phosphide nanosheets onto copper nanowires. Int. J. Hydrog. Energy 2021, 46, 19421–19432.

    Article  CAS  Google Scholar 

  44. Wang, D.; Li, J.; Zhao, Y.; Xu, H. T.; Zhao, J. Z. Bifunctional Cu2S-Co(OH)2 nanotube array/Cu foam electrocatalyst for overall water splitting. Electrochim. Acta 2019, 316, 8–18.

    Article  CAS  Google Scholar 

  45. Xin, Y.; Wang, F. L.; Chen, L. Y.; Li, Y. W.; Shen, K. Superior bifunctional cobalt/nitrogen-codoped carbon nanosheet arrays on copper foam enable stable energy-saving hydrogen production accompanied with glucose upgrading. Green Chem. 2022, 44, 6544–6555.

    Article  Google Scholar 

  46. Gao, D. D.; Liu, R. J.; Liu, S.; Greiner, S.; Anjass, M.; Biskupek, J.; Kaiser, U.; Braun, H.; Jacob, T.; Streb, C. Electrocatalytic oxygen evolution by hierarchically structured cobalt-iron composites. ACS Appl. Mater. Interfaces 2021, 13, 19048–19054.

    Article  CAS  PubMed  Google Scholar 

  47. Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 1991, 113, 855–861.

    Article  CAS  Google Scholar 

  48. Ni, S.; Qu, H. N.; Xu, Z. H.; Zhu, X. Y.; Xing, H. F.; Wang, L.; Yu, J. M.; Liu, H. Z.; Chen, C. M.; Yang, L. R. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B: Environ. 2021, 299, 120638.

    Article  CAS  Google Scholar 

  49. Xu, Y.; Sheng, Y. W.; Wang, M. Z.; Ren, T. L.; Shi, K. K.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. Interface coupling induced built-in electric fields boost electrochemical nitrate reduction to ammonia over CuO@MnO2 oree-shell hierarchical nanoarrays. J. Mater. Chem. A 2022, 10, 16883–16890.

    Article  CAS  Google Scholar 

  50. Liu, H.; Li, J. S.; Du, F.; Yang, L. Y.; Huang, S. Y.; Gao, J. F.; Li, C. M.; Guo, C. X. A core–shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate. Green Energy Environ. 2023, 8, 1619–1629.

    Article  CAS  Google Scholar 

  51. Fu, W. Y.; Du, Y. Y.; Jing, J. N.; Fu, C. H.; Zhou, M. H. Highly selective nitrate reduction to ammonia on CoO/Cu foam via constructing interfacial electric field to tune adsorption of reactants. Appl. Catal. B: Environ. 2023, 324, 122201.

    Article  CAS  Google Scholar 

  52. Li, Z. C.; Pei, Y.; Ma, R. G.; Wang, Y. D.; Zhu, Y. F.; Yang, M. H.; Wang, J. C. A phosphate semiconductor-induced built-in electric field boosts electron enrichment for electrocatalytic hydrogen evolution in alkaline conditions. J. Mater. Chem. A 2021, 9, 13109–13114.

    Article  CAS  Google Scholar 

  53. Ouyang, Q.; Cheng, S. C.; Yang, C. H.; Lei, Z. T. Vertically grown p-n heterojunction FeCoNi LDH/CuO arrays with modulated interfacial charges to facilitate the electrocatalytic oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 11938–11947.

    Article  CAS  Google Scholar 

  54. Chen, J. P.; Zheng, J. P.; He, W. D.; Liang, H. K.; Li, Y.; Cui, H.; Wang, C. X. Self-standing hollow porous Co/a-WOx nanowire with maximum Mott–Schottky effect for boosting alkaline hydrogen evolution reaction. Nano Res. 2023, 16, 4603–4611.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22204119) and Science and Technology Plans of Tianjin (No. 22ZYJDSS00070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaxiao Guo or Yi Liu.

Electronic Supplementary Material

12274_2024_6530_MOESM1_ESM.pdf

Efficient electrocatalytic reduction of nitrate to ammonia at low concentration by copper-cobalt oxide nanowires with shell–core structure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Guo, Y., Sun, J. et al. Efficient electrocatalytic reduction of nitrate to ammonia at low concentration by copper-cobalt oxide nanowires with shell–core structure. Nano Res. 17, 5087–5094 (2024). https://doi.org/10.1007/s12274-024-6530-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6530-8

Keywords

Navigation