Skip to main content
Log in

Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

S-scheme possesses superior redox capabilities compared with the II-scheme, providing an effective method to solve the innate defects of g-C3N4 (CN). In this study, S-doped g-C3N4/g-C3N4 (SCN-tm/CN) S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance. In-situ Kelvin probe force microscopy (KPFM) confirms the transport of photo-generated electrons from CN to SCN. Density functional theory (DFT) calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective. Femtosecond transient absorption spectrum (fs-TAS) indicates prolonged lifetimes of SCN-tm/CN3 (τ1: 9.7, τ2: 110, and τ3: 1343.5 ps) in comparison to those of CN (τ1: 4.86, τ2: 55.2, and τ3: 927 ps), signifying that the construction of homojunction promotes the separation and transport of electron hole pairs, thus favoring the photocatalytic process. Under visible light irradiation, the optimized SCN-tm/CN3 exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3 µmol·g−1·h−1, which is 20.4 times higher than that of CN (265.7 µmol·g−1·h−1). Moreover, the homojunction also displays an apparent quantum efficiency of 26.8% at 435 nm as well as ultra-long and ultra-stable cycle ability. This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y.; Liu, X. Q.; Liu, J.; Han, B.; Hu, X. Q.; Yang, F.; Xu, Z. W.; Li, Y. C.; Jia, S. R.; Li, Z. et al. Carbon quantum dot implanted graphite carbon nitride nanotubes: Excellent charge separation and enhanced photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 5765–5771.

    Article  CAS  Google Scholar 

  2. Wang, P. L.; Fan, S. Y.; Li, X. Y.; Wang, J.; Liu, Z. Y.; Niu, Z. D.; Tadé, M. O.; Liu, S. M. Single Pd atoms synergistically manipulating charge polarization and active sites for simultaneously photocatalytic hydrogen production and oxidation of benzylamine. Nano Energy 2022, 95, 107045.

    Article  CAS  Google Scholar 

  3. Thangavel, N.; Pandi, K.; Shaheer, A. R. M.; Neppolian, B. Surface-state-induced upward band bending in P doped g-C3N4 for the formation of an isotype heterojunction between bulk g-C3N4 and P doped g-C3N4: Photocatalytic hydrogen production. Catal. Sci. Technol. 2020, 10, 8015–8025.

    Article  CAS  Google Scholar 

  4. Xia, B. Q.; He, B. W.; Zhang, J. J.; Li, L. Q.; Zhang, Y. Z.; Yu, J. G.; Ran, J. R.; Qiao, S. Z. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2201449.

    Article  CAS  Google Scholar 

  5. Li, S. S.; Peng, Y. N.; Hu, C.; Chen, Z. H. Self-assembled synthesis of benzene-ring-grafted g-C3N4 nanotubes for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2020, 279, 119401.

    Article  CAS  Google Scholar 

  6. Rajput, Y.; Kumar, P.; Zhang, T. C.; Kumar, D.; Nemiwal, M. Recent advances in g-C3N4-based photocatalysts for hydrogen evolution reactions. Int. J. Hydrogen Energy 2022, 47, 38533–38555.

    Article  CAS  Google Scholar 

  7. Wang, J. L.; Wang, S. Z. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coord. Chem. Rev. 2022, 453, 214338.

    Article  CAS  Google Scholar 

  8. Jiang, L. B.; Yuan, X. Z.; Zeng, G. M.; Liang, J.; Wu, Z. B.; Wang, H.; Zhang, J.; Xiong, T.; Li, H. A facile band alignment of polymeric carbon nitride isotype heterojunctions for enhanced photocatalytic tetracycline degradation. Environ. Sci. Nano 2018, 5, 2604–2617.

    Article  CAS  Google Scholar 

  9. Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, M. J.; Zhang, Y.; Zhu, Y.; Wang, J. J.; Qiao, L.; Zhao, Y.; Tao, Y. N.; Xiao, Y.; Tang, L. Insights into adsorption and high photocatalytic oxidation of ciprofloxacin under visible light by intramolecular Donor-Acceptor like p-n isotype heterojunction: Performance and mechanism. Chem. Eng. J. 2023, 464, 142533.

    Article  CAS  Google Scholar 

  11. Che, W.; Cheng, W. R.; Yao, T.; Tang, F. M.; Liu, W.; Su, H.; Huang, Y. Y.; Liu, Q. H.; Liu, J. K.; Hu, F. C. et al. Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 2017, 139, 3021–3026.

    Article  CAS  PubMed  Google Scholar 

  12. Gao, H. L.; Guo, Y.; Yu, Z. W.; Zhao, M. M.; Hou, Y.; Zhu, Z. Q.; Yan, S. C.; Liu, Q. J.; Zou, Z. G. Incorporating p-phenylene as an electron-donating group into graphitic carbon nitride for efficient charge separation. ChemSusChem 2019, 12, 4285–4292.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Y. Z.; Chen, Z. W.; Li, J. L.; Lu, Z. Y.; Wang, X. Self-assembled synthesis of oxygen-doped g-C3N4 nanotubes in enhancement of visible-light photocatalytic hydrogen. J. Energy Chem. 2021, 54, 36–44.

    Article  Google Scholar 

  14. Wang, N.; Wang, J.; Hu, J. H.; Lu, X. Q.; Sun, J.; Shi, F.; Liu, Z. H.; Lei, Z. B.; Jiang, R. B. Design of palladium-doped g-C3N4 for enhanced photocatalytic activity toward hydrogen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 2866–2873.

    Article  CAS  Google Scholar 

  15. Wang, X. W.; Li, Q. C.; Gan, L.; Ji, X. F.; Chen, F. Y.; Peng, X. K.; Zhang, R. B. 3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction. J. Energy Chem. 2021, 53, 139–146.

    Article  CAS  Google Scholar 

  16. Huang, Y. B.; Liu, J.; Zhao, C.; Jia, X. H.; Ma, M. M.; Qian, Y. Y.; Yang, C.; Liu, K.; Tan, F. R.; Wang, Z. J. et al. Facile synthesis of defect-modified thin-layered and porous g-C3N4 with synergetic improvement for photocatalytic H2 production. ACS Appl. Mater. Interfaces 2020, 12, 52603–52614.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, S. B.; Ng, Y. H.; Liao, J. H.; Gao, Q. Z.; Yang, S. Y.; Peng, F.; Zhong, X. H.; Fang, Y. P.; Zhang, S. S. FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer. J. Energy Chem. 2021, 52, 92–101.

    Article  CAS  Google Scholar 

  18. Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

    Article  CAS  Google Scholar 

  19. Zhou, M. J.; Hou, Z. H.; Zhang, L.; Liu, Y.; Gao, Q. Z.; Chen, X. B. n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Sustainable Energy Fuels 2017, 1, 317–323.

    Article  CAS  Google Scholar 

  20. Yang, Y.; Yang, F.; Li, Z.; Zhang, N.; Hao, S. Z-scheme g-C3N4/C/S-g-C3N4 heterostructural nanotube with enhanced porous structure and visible light driven photocatalysis. Microporous Mesoporous Mater. 2021, 314, 110891.

    Article  CAS  Google Scholar 

  21. Deng, Y. C.; Li, L.; Zeng, H.; Tang, R. D.; Zhou, Z. P.; Sun, Y. C.; Feng, C. Y.; Gong, D. X.; Wang, J. J.; Huang, Y. Unveiling the origin of high-efficiency charge transport effect of C3N5/C3N4 homojunction for activating peroxymonosulfate to degrade atrazine under visible light. Chem. Eng. J. 2023, 457, 141261.

    Article  CAS  Google Scholar 

  22. Sudhaik, A.; Sonu; Hasija, V.; Selvasembian, R.; Ahamad, T.; Singh, A.; Khan, A. A. P.; Raizada, P.; Singh, P. Applications of graphitic carbon nitride-based S-scheme heterojunctions for environmental remediation and energy conversion. Nanofabrication. 2023, 8, 1–37.

    Article  Google Scholar 

  23. Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.

    Article  CAS  Google Scholar 

  24. Wu, X. H.; Chen, G. Q.; Wang, J.; Li, J. M.; Wang, G. H. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution. Acta Phys. Chim. Sin. 2023, 39, 2212016.

    Article  Google Scholar 

  25. Ruan, X. W.; Huang, C. X.; Cheng, H.; Zhang, Z. Q.; Cui, Y.; Li, Z. Y.; Xie, T. F.; Ba, K. K.; Zhang, H. Y.; Zhang, L. et al. A twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Adv. Mater. 2023, 35, 2209141.

    Article  CAS  Google Scholar 

  26. Zhao, C.; Zheng, M.; Wang, D.; Li, Q.; Jiang, B. J. Enhanced charge separation and transfer of Fe2O3@nitrogen-rich carbon nitride tubes for photocatalytic water splitting. Energy Technol. 2020, 8, 2000108.

    Article  CAS  Google Scholar 

  27. Zhao, Y.; Shi, H. X.; Yang, D. Y.; Fan, J.; Hu, X. Y.; Liu, E. Z. Fabrication of a Sb2MoO6/g-C3N4 Photocatalyst for Enhanced RhB Degradation and H2 Generation. J. Phys. Chem. C. 2020, 124, 13771–13778.

    Article  CAS  Google Scholar 

  28. Kong, C.; Zhang, F. J.; Sun, X. Y.; Kai, C.; Cai, W. Q. In-situ grown rod-shaped Ni(OH)2 between interlayer of g-C3N4 for hydrogen evolution under visible light. Inorg. Chem. Commun. 2020, 122, 108264.

    Article  CAS  Google Scholar 

  29. Zhang, B.; Shi, H. X.; Yan, Y. J.; Liu, C. Q.; Hu, X. Y.; Liu, E. Z.; Fan, J. A novel S-scheme 1D/2D Bi2S3/g-C3N4 heterojunctions with enhanced H2 evolution activity. Colloids Surf. A Physicochem. Eng Asp. 2021, 608, 125598.

    Article  CAS  Google Scholar 

  30. Tong, Z. W.; Yang, D.; Sun, Y. Y.; Nan, Y. H.; Jiang, Z. Y. Tubular g-C3N4 isotype heterojunction: Enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 2016, 12, 4093–4101.

    Article  CAS  PubMed  Google Scholar 

  31. Sun, S. D.; Li, J.; Song, P.; Cui, J.; Yang, Q.; Zheng, X.; Yang, Z. M.; Liang, S. H. Facile constructing of isotype g-C3N4(bulk)/g-C3N4(nanosheet) heterojunctions through thermal polymerization of single-source glucose-modified melamine: An efficient charge separation system for photocatalytic hydrogen production. Appl. Surf. Sci. 2020, 500, 143985.

    Article  CAS  Google Scholar 

  32. Guan, X. J.; Zong, S. C.; Shen, S. H. Homojunction photocatalysts for water splitting. Nano Res. 2022, 15, 10171–10184.

    Article  CAS  Google Scholar 

  33. Fang, X.; Chen, L.; Cheng, H. R.; Bian, X. Q.; Sun, W. H.; Ding, K. N.; Xia, X. H.; Chen, X.; Zhu, J. F.; Zheng, Y. H. Homojunction and ohmic contact coexisting carbon nitride for efficient photocatalytic hydrogen evolution. Nano Res. 2023, 16, 8782–8792.

    Article  CAS  Google Scholar 

  34. Wu, M.; Zhang, J.; He, B. B.; Wang, H. W.; Wang, R.; Gong, Y. S. In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 241, 159–166.

    Article  CAS  Google Scholar 

  35. Chen, Z. H.; Guo, F.; Sun, H. R.; Shi, Y. X.; Shi, W. L. Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 607, 1391–1401.

    Article  CAS  PubMed  Google Scholar 

  36. Gu, Y. P.; Sun, L. X.; Feng, H. Q.; Li, Y. K.; Li, Z. J. Novel up-conversion N, S co-doped carbon dots/g-C3N4 photocatalyst for enhanced photocatalytic hydrogen evolution under visible and near-infrared light. Int. J. Hydrogen Energy 2023, 48, 5976–5987.

    Article  CAS  Google Scholar 

  37. Gu, Y. P.; Feng, H. Q.; Zhao, J. D.; Cui, M. L.; Li, Y. K.; Li, Z. J. Rational construction of edge-grafted g-C3N4 via cross-linking aromatic compounds with C-F bonds for efficient photocatalytic H2 evolution. Chem. Eng. J. 2023, 476, 146555.

    Article  CAS  Google Scholar 

  38. Qin, J. C.; Jiao, Y. Y.; Liu, M. Q.; Li, Y. K.; Wang, J. S. Heat treatment to prepare boron doped g-C3N4 nanodots/carbon-rich g-C3N4 nanosheets heterojunction with enhanced photocatalytic performance for water splitting hydrogen evolution. J. Alloys Compd. 2022, 898, 162846.

    Article  CAS  Google Scholar 

  39. Wu, T.; Liu, Z. F.; Shao, B. B.; Liang, Q. H.; He, Q. Y.; Pan, Y.; Zhang, X. S.; Liu, Y.; Sun, J. W.; Gong, S. X. Hydrogen peroxide-impregnated supramolecular precursors synthesize mesoporous-rich ant nest-like filled tubular g-C3N4 for effective photocatalytic removal of pollutants. Chem. Eng. J. 2022, 447, 137332.

    Article  CAS  Google Scholar 

  40. Babu, P.; Mohanty, S.; Naik, B.; Parida, K. Synergistic effects of boron and sulfur Co-doping into graphitic carbon nitride framework for enhanced photocatalytic activity in visible light driven hydrogen generation. ACS Appl. Energy Mater. 2018, 1, 5936–5947.

    Article  CAS  Google Scholar 

  41. Wagner, C. D.; Davis, L. E.; Zeller, M. V.; Taylor, J. A.; Raymond, R. H.; Gale, L. H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 1981, 3, 211–225.

    Article  CAS  Google Scholar 

  42. Yan, J.; Wang, T.; Qiu, S. Y.; Song, Z. L.; Zhu, W. Q.; Liu, X. H.; Lian, J. B.; Sun, C. H.; Li, H. M. Insights into the efficient charge separation over Nb2O5/2D-C3N4 heterostructure for exceptional visible-light driven H2 evolution. J. Energy Chem. 2022, 65, 548–555.

    Article  CAS  Google Scholar 

  43. Chen, X. G.; Chu, B. B.; Gu, Q. H.; Liu, H.; Li, C.; Li, W. Z.; Lu, J.; Wu, D. H. Facile fabrication of protonated g-C3N4/oxygen-doped g-C3N4 homojunction with enhanced visible photocatalytic degradation performance of deoxynivalenol. J. Environ. Chem. Eng. 2021, 9, 106380.

    Article  CAS  Google Scholar 

  44. Chen, P.; Meng, L. H.; Chen, L.; Guo, J. K.; Shen, S.; Au, C. T.; Yin, S. F. Double-shell and flower-like ZnS-C3N4 derived from in situ supramolecular self-assembly for selective aerobic oxidation of amines to imines. ACS Sustainable Chem. Eng. 2019, 7, 14203–14209.

    Article  CAS  Google Scholar 

  45. Sun, X. H.; Sun, L.; Li, G. N.; Tuo, Y.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors thed-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.

    Article  CAS  Google Scholar 

  46. Li, L. J.; Xu, J.; Zhao, S.; Mao, M.; Li, X. H. Construction of p-n type heterojunction for effective photo-generated electron separation and visible light hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 1934–1944.

    Article  CAS  Google Scholar 

  47. Zhao, X.; Liu, M. J.; Wang, Y. C.; Xiong, Y.; Yang, P. Y.; Qin, J. Q.; Xiong, X.; Lei, Y. P. Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 2022, 16, 19959–19979.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, J. J.; Yang, G. Y.; He, B. W.; Cheng, B.; Li, Y. J.; Liang, G. J.; Wang, L. X. Electron transfer kinetics in CdS/Pt heterojunction photocatalyst during water splitting. Chin, J. Catal. 2022, 43, 2530–2538.

    Article  CAS  Google Scholar 

  49. Qiu, B. C.; Cai, L. J.; Zhang, N.; Tao, X. M.; Chai, Y. A ternary dumbbell structure with spatially separated catalytic sites for photocatalytic overall water splitting. Adv. Sci. 2020, 7, 1903568.

    Article  CAS  Google Scholar 

  50. Xu, T. T.; Xia, Z. H.; Li, H. G.; Niu, P.; Wang, S. L.; Li, L. Constructing crystalline g-C3N4/g-C3N4−xSx isotype heterostructure for efficient photocatalytic and piezocatalytic performances. Energy Environ. Mater. 2023, 6, e12306.

    Article  CAS  Google Scholar 

  51. Wang, H. Y.; Niu, R. R.; Liu, J. H.; Guo, S.; Yang, Y. P.; Liu, Z. Y.; Li, J. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p—n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 2022, 15, 6987–6998.

    Article  CAS  Google Scholar 

  52. Su, H.; Lou, H. M.; Zhao, Z. P.; Zhou, L.; Pang, Y. X.; Xie, H. J.; Rao, C.; Yang, D. J.; Qiu, X. Q. In-situ Mo doped ZnIn2S4 wrapped MoO3 S-scheme heterojunction via Mo-S bonds to enhance photocatalytic HER. Chem. Eng. J. 2022, 430, 132770.

    Article  CAS  Google Scholar 

  53. Wang, J.; Pan, R. H.; Yan, S. Y.; Wang, R.; Niu, X. Y.; Hao, Q.; Ye, J. L.; Wu, Y. P.; Yang, H. Y. Construction of 1D/2D core-shell structured K6Nb10.8O30@Zn2In2S5 as S-scheme photocatalysts for cocatalyst-free hydrogen production. Chem. Eng. J. 2023, 463, 142489.

    Article  CAS  Google Scholar 

  54. Hu, J. D.; Chen, C.; Hu, T.; Li, J. S.; Lu, H.; Zheng, Y.; Yang, X. G.; Guo, C. X.; Li, C. M. Metal-free heterojunction of black phosphorus/oxygen-enriched porous g-C3N4 as an efficient photocatalyst for Fenton-like cascade water purification. J. Mater. Chem. A 2020, 8, 19484–19492.

    Article  CAS  Google Scholar 

  55. Wang, X. H.; Wang, X. H.; Tian, W. L.; Meng, A. L.; Li, Z. J.; Li, S. X.; Wang, L.; Li, G. C. High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2022, 303, 120933.

    Article  CAS  Google Scholar 

  56. Liang, Q. H.; Liu, X. J.; Wang, J. J.; Liu, Y.; Liu, Z. F.; Tang, L.; Shao, B. B.; Zhang, W.; Gong, S. X.; Cheng, M. et al. In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: Experiments and theories. J. Hazard. Mater. 2021, 401, 123355.

    Article  CAS  PubMed  Google Scholar 

  57. Shi, Y. X.; Li, L. L.; Xu, Z.; Guo, F.; Shi, W. L. Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production. Chem. Eng. J. 2023, 459, 141549.

    Article  CAS  Google Scholar 

  58. Ren, H. T.; Qi, F.; Labidi, A.; Zhao, J. J.; Wang, H.; Xin, Y.; Luo, J. M.; Wang, C. Y. Chemically bonded carbon quantum dots/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic degradation: Interfacial engineering and mechanism insight. Appl. Catal. B Environ. 2023, 330, 122587.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Henan (No. 232300421361) and the National Natural Science Foundation of China (Nos. 21671176 and 21001096). We thank Beijing China Education Au-light Co., Ltd. for providing the instrument and assistance with SPV measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yike Li or Zhongjun Li.

Electronic Supplementary Material

12274_2024_6501_MOESM1_ESM.pdf

Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Li, Y., Feng, H. et al. Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control. Nano Res. 17, 4961–4970 (2024). https://doi.org/10.1007/s12274-024-6501-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6501-0

Keywords

Navigation