Skip to main content
Log in

Quantitative assessment of the breast cancer marker HER2 using a gold nanoparticle-based lateral flow immunoassay

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Human epidermal growth factor receptor 2 (HER2) is an important biomarker for detection and treatment of breast cancer. In this study, we developed monoclonal antibodies against the extracellular domain (ECD) of HER2 and established a rapid and accurate lateral flow immunoassay (LFIA) for use in community medical institutions. The gene sequence of human HER2-ECD was obtained from the National Center for Biotechnology Information (NCBI) to construct the expression plasmid. HER2-ECD protein expressed in HEK293F cells was used to immunize BALB/c mice. The monoclonal antibodies were produced in mouse ascites and isolated by hybridoma cell screening. Antibodies were analyzed for purity by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel-electrophoresis) and affinity was assessed by enzyme-linked immunosorbent assay (ELISA) while subtypes were detected using the commercial kits. The HER2-ECD test strip was prepared based on the sandwich method and evaluated using a portable detection instrument. The affinity of the paired antibodies, 4D8 and 8D9, both reached 1 × 108 L/mol. Both antibodies specifically recognized the HER2-ECD protein in serum. The limit of detection (LOD) of the gold nanoparticle (AuNP)-based LFIA was 1.7 ng/mL with a detection range of 1.7–400 ng/mL, and the performance of the HER2-ECD strip correlated well with that of a Siemens chemiluminescent immunoassay (CLIA) kit. In conclusion, the paired antibodies were successfully prepared with high affinity and specificity. The AuNP-based LFIA of HER2-ECD provides a fast and accurate method to detect the concentration of HER2-ECD in serum samples for clinical use in community medical institutions, and could contribute to determining the progress of the disease or the effectiveness of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wieduwilt, M. J.; Moasser, M. M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell. Mol. Life Sci. 2008, 65, 1566–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yarden, Y.; Sliwkowski, M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell. Biol. 2001, 2, 127–137.

    Article  CAS  PubMed  Google Scholar 

  3. Slamon, D. J.; Clark, G. M.; Wong, S. G.; Levin, W. J.; Ullrich, A.; McGuire, W. L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182.

    Article  CAS  PubMed  Google Scholar 

  4. Akiyama, T.; Sudo, C.; Ogawara, H.; Toyoshima, K.; Yamamoto, T. The product of the human c-erbB-2 gene: A 185-kilodalton glycoprotein with tyrosine kinase activity. Science 1986, 232, 1644–1646.

    Article  CAS  PubMed  Google Scholar 

  5. Rubin, I.; Yarden, Y. The basic biology of HER2. Ann. Oncol. 2001, 12, S3–S8.

    Article  PubMed  Google Scholar 

  6. Ligibel, J. A. Could the women’s health initiative breathe new life into breast cancer prevention. J. Clin. Oncol. 2020, 38, 1375–1377.

    Article  PubMed  Google Scholar 

  7. Kamgar, M.; Assad, H.; Hastert, T. A.; McLaughlin, E.; Reding, K.; Paskett, E. D.; Bea, J. W.; Shadyab, A. H.; Neuhouser, M. L.; Nassir, R. et al. Peripheral neuropathy after breast cancer: An analysis of data from the women’s health initiative life and longevity after cancer cohort. J. Clin. Oncol. 2020, 38, e24093.

    Article  Google Scholar 

  8. Papakonstantinou, A.; Nuciforo, P.; Borrell, M.; Zamora, E.; Pimentel, I.; Saura, C.; Oliveira, M. The conundrum of breast cancer and microbiome - a comprehensive review of the current evidence. Cancer Treat. Rev. 2022, 111, 102470.

    Article  CAS  PubMed  Google Scholar 

  9. Wolff, A. C.; Hammond, M. E. H.; Allison, K. H.; Harvey, B. E.; Mangu, P. B.; Bartlett, J. M. S.; Bilous, M.; Ellis, I. O.; Fitzgibbons, P.; Hanna, W. et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of american pathologists clinical practice guideline focused update. Arch. Pathol. Lab. Med. 2018, 142, 1364–1382.

    Article  PubMed  Google Scholar 

  10. Xu, B.; Shen, J. G.; Guo, W. H.; Zhao, W. H.; Zhuang, Y. Y.; Wang, L. B. Impact of the 2018 ASCO/CAP HER2 guidelines update for HER2 testing by FISH in breast cancer. Pathol. Res. Pract. 2019, 215, 251–255.

    Article  CAS  PubMed  Google Scholar 

  11. Perez, E. A.; Cortés, J.; Gonzalez-Angulo, A. M.; Bartlett, J. M. S. HER2 testing: Current status and future directions. Cancer Treat. Rev. 2014, 40, 276–284.

    Article  CAS  PubMed  Google Scholar 

  12. Shamshirian, A.; Aref, A. R.; Yip, G. W.; Ebrahimi Warkiani, M.; Heydari, K.; Razavi Bazaz, S.; Hamzehgardeshi, Z.; Shamshirian, D.; Moosazadeh, M.; Alizadeh-Navaei, R. Diagnostic value of serum HER2 levels in breast cancer: A systematic review and meta-analysis. BMC Cancer. 2020, 20, 1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lam, L.; McAndrew, N.; Yee, M.; Fu, T.; Tchou, J. C.; Zhang, H. T. Challenges in the clinical utility of the serum test for HER2 ECD. Biochim. Biophys. Acta Rev. Cancer. 2012, 1826, 199–208.

    Article  CAS  Google Scholar 

  14. Tsé, C.; Gauchez, A. S.; Jacot, W.; Lamy, P. J. HER2 shedding and serum HER2 extracellular domain: Biology and clinical utility in breast cancer. Cancer Treat. Rev. 2012, 38, 133–142.

    Article  PubMed  Google Scholar 

  15. Alhalwani, A. Y.; Repine, J. E.; Knowles, M. K.; Huffman, J. A. Development of a sandwich ELISA with potential for selective quantification of human lactoferrin protein nitrated through disease or environmental exposure. Anal. Bioanal. Chem. 2018, 410, 1389–1396.

    Article  CAS  PubMed  Google Scholar 

  16. Moelans, C. B.; de Weger, R. A.; Van der Wall, E.; van Diest, P. J. Current technologies for HER2 testing in breast cancer. Crit. Rev. Oncol. Hematol. 2011, 80, 380–392.

    Article  CAS  PubMed  Google Scholar 

  17. Ahirwar, R. Recent advances in nanomaterials-based electrochemical immunosensors and aptasensors for HER2 assessment in breast cancer. Microchim. Acta 2021, 188, 317.

    Article  CAS  Google Scholar 

  18. Lah, Z. M. A. N. H.; Ahmad, S. A. A.; Zaini, M. S.; Kamarudin, M. A. An electrochemical sandwich immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J. Pharm. Biomed. Anal. 2019, 174, 608–617.

    Article  CAS  PubMed  Google Scholar 

  19. Freitas, M.; Nouws, H. P. A.; Keating, E.; Delerue-Matos, C. High-performance electrochemical immunomagnetic assay for breast cancer analysis. Sens. Actuators B Chem. 2020, 308, 127667.

    Article  CAS  Google Scholar 

  20. Marques, R. C. B.; Viswanathan, S.; Nouws, H. P. A.; Delerue-Matos, C.; González-García, M. B. Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta 2014, 129, 594–599.

    Article  CAS  PubMed  Google Scholar 

  21. Chu, H. W.; Liu, C. H.; Liu, J. S.; Yang, J.; Li, Y. C.; Zhang, X. J. Recent advances and challenges of biosensing in point-of-care molecular diagnosis. Sens. Actuators B Chem. 2021, 348, 130708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, J. C.; Wang, K.; Xu, H.; Yan, W. Q.; Jin, Q. H.; Cui, D. X. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019, 202, 96–110.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, G. Y.; Yin, X. D.; Jin, D. L.; Zhang, B.; Gu, Y. Y.; An, Y. R. Paper-based immunosensors: Current trends in the types and applied detection techniques. Trends Analyt. Chem. 2019, 111, 100–117.

    Article  CAS  Google Scholar 

  24. Mahmoudi, T.; de la Guardia, M.; Baradaran, B. Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends. Trends Analyt. Chem. 2020, 125, 115842.

    Article  CAS  Google Scholar 

  25. Lou, D. D.; Fan, L.; Jiang, T.; Zhang, Y. Advances in nanoparticle-based lateral flow immunoassay for point-of-care testing. VIEW 2022, 3, 20200125.

    Article  CAS  Google Scholar 

  26. Nguyen, V. T.; Song, S.; Park, S.; Joo, C. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens. Bioelectron. 2020, 152, 112015.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, N.; Ahmed, R.; Damayantharan, M.; Ünal, B.; Butt, H.; Yetisen, A. K. Lateral and vertical flow assays for point-of-care diagnostics. Adv. Healthc. Mater. 2019, 8, 1900244.

    Article  Google Scholar 

  28. Urusov, A. E.; Zherdev, A. V.; Dzantiev, B. B. Towards lateral flow quantitative assays: Detection approaches. Biosensors 2019, 9, 89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu, Z. D.; O’Dell, D.; Srinivasan, B.; Rey, E.; Wang, R. S.; Vemulapati, S.; Mehta, S.; Erickson, D. Rapid diagnostic testing platform for iron and vitamin A deficiency. Proc. Natl. Acad. Sci. USA 2017, 114, 13513–13518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ye, L. Y.; Xu, L. G.; Kuang, H.; Xu, X. X.; Xu, C. L. Colloidal gold-based immunochromatographic biosensor for quantitative detection of S100B in serum samples. Nanoscale Horiz. 2023, 8, 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  31. Ye, L. Y.; Xu, X. X.; Song, S. S.; Xu, L. G.; Kuang, H.; Xu, C. L. Rapid colloidal gold immunochromatographic assay for the detection of SARS-CoV-2 total antibodies after vaccination. J. Mater. Chem. B 2022, 10, 1786–1794.

    Article  CAS  PubMed  Google Scholar 

  32. Ye, L. Y.; Lei, X. L.; Xu, L. G.; Kuang, H.; Xu, C. L.; Xu, X. X. Gold nanoparticle-based immunochromatographic assay for the rapid detection of the SARS-CoV-2 Omicron variant. Mater. Chem. Front. 2023, 7, 4063–4072.

    Article  CAS  Google Scholar 

  33. Guo, L. L.; Xu, X. X.; Zhao, J.; Hu, S. D.; Xu, L. G.; Kuang, H.; Xu, C. L. Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor. Nano Res. 2022, 15, 5483–5491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lei, X. L.; Xu, X. X.; Wang, L.; Zhou, W.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L. A quadruplex immunochromatographic assay for the ultrasensitive detection of 11 anesthetics. Nano Res. 2023, 16, 11269–11277.

    Article  CAS  Google Scholar 

  35. Zeng, L.; Xu, X. X.; Song, S. S.; Xu, L. G.; Liu, L. Q.; Xiao, J.; Xu, C. L.; Kuang, H. Synthesis of haptens and gold-based immunochromatographic paper sensor for vitamin B6 in energy drinks and dietary supplements. Nano Res. 2022, 15, 2479–2488.

    Article  CAS  Google Scholar 

  36. Lei, X. L.; Xu, X. X.; Liu, L. Q.; Xu, L. G.; Wang, L.; Kuang, H.; Xu, C. L. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res. 2023, 16, 1259–1268.

    Article  CAS  Google Scholar 

  37. Yu, X. C.; McGraw, P. A.; House, F. S.; Crowe, J. E. An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. J. Immunol. Methods 2008, 336, 142–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng, L.; Guo, L. L.; Wang, Z. X.; Xu, X. X.; Ding, H. L.; Song, S. S.; Xu, L. G.; Kuang, H.; Xu, C. L. Gold nanoparticle-based immunochromatographic assay for detection Pseudomonas aeruginosa in water and food samples. Food Chem. X 2021, 9, 100117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, J. J.; Cui, D. X.; Jiang, Y.; Li, Y. Y.; Liu, Z. X.; Tao, L.; Zhao, Q.; Diao, A. P. Selection and characterization of a novel affibody peptide and its application in a two-site ELISA for the detection of cancer biomarker alpha-fetoprotein. Int. J. Biol. Macromol. 2021, 166, 884–892.

    Article  CAS  PubMed  Google Scholar 

  40. Guliy, O. I.; Velichko, N. S.; Fedonenko, Y. P.; Bunin, V. D. Use of an electro-optical sensor and phage antibodies for immunodetection of Herbaspirillum. Talanta 2019, 202, 362–368.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Z. X.; Wu, X. L.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L. An immunochromatographic strip sensor for sildenafil and its analogues. J. Mater. Chem. B 2019, 7, 6383–6389.

    Article  CAS  PubMed  Google Scholar 

  42. Lu, Q. Q.; Ding, H. L.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L.; Guo, L. L. Immunochromatographic assay for rapid detection of flupyradifurone in grape, blueberry, and tomato samples. Food Chem. 2024, 433, 137328.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, J.; Xu, X. X.; Wu, A. H.; Song, S. S.; Xu, L. G.; Xu, C. L.; Kuang, H.; Liu, L. Q. Immunochromatographic assay for the rapid and sensitive detection of etoxazole in orange and grape samples. LWT 2022, 163, 113519.

    Article  CAS  Google Scholar 

  44. Han, H.; Wang, C. W.; Yang, X. S.; Zheng, S.; Cheng, X. D.; Liu, Z. Z.; Zhao, B. H.; Xiao, R. Rapid field determination of SARS-CoV-2 by a colorimetric and fluorescent dual-functional lateral flow immunoassay biosensor. Sens. Actuators B Chem. 2022, 351, 130897.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, C. W.; Yang, X. S.; Zheng, S.; Cheng, X. D.; Xiao, R.; Li, Q. J.; Wang, W. Q.; Liu, X. X.; Wang, S. Q. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. Sens. Actuators B Chem. 2021, 345, 130372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, S.; Peng, Y. L.; Hu, J.; Duan, H.; Ma, T. T.; Hou, L.; Li, X. M.; Xiong, Y. H. Quantum dot nanobead-based immunochromatographic assay for the quantitative detection of the procalcitonin antigen in serum samples. Microchem. J. 2020, 159, 105533.

    Article  CAS  Google Scholar 

  47. Geistanger, A.; Braese, K.; Laubender, R. Automated data analytics workflow for stability experiments based on regression analysis. J. Mass. Spectrom Adv. Clin. Lab. 2022, 24, 5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 22236002), and National Key R&D Program(Nos. 2023YFF1105003 and 2022YFA1207300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Kuang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Xu, X., Qu, A. et al. Quantitative assessment of the breast cancer marker HER2 using a gold nanoparticle-based lateral flow immunoassay. Nano Res. 17, 5452–5460 (2024). https://doi.org/10.1007/s12274-024-6471-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6471-2

Keywords

Navigation