Skip to main content
Log in

Rational design multi-color-emissive chemiluminescent carbon nanodots in a single solvothermal reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, the chemiluminescence (CL) induced by carbon nanodots (CDs) has intrigued researchers’ extensive interests in various applications due to its special light emission principle. However, the difficulty of synthesizing chemiluminescent CDs with full-spectrum emission severely hinders the further regulation of the CL emission mechanism. Herein, the multi-color-emissive chemiluminescent CDs are rational designed and further synthesized by regulating the sp2-hybrid core and sp3-hybrid surface from the citrate-ammonia molecular in a single solvothermal reaction. More experimental characterizations and density functional theory calculations reveal that the higher temperature can promote the crosslinking polymerization/carbonization of carbon core and the higher protonation of solvent can determine the core size of final CDs, resulting in the variant CL emission from molecular-, crosslinking- and core-states. Thus, the CL emission of the CDs can be further synthesized by tuning the luminescence chromophores in the formation process via regulating the temperature and solvent, enabling the applications of the CL CDs in illumination and information encryption. This study paves a new technology to understand the luminescence of CDs and affords an industry translational potential over traditional chemiluminescent molecular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lou, Q.; Ni, Q. C.; Niu, C. Y.; Wei, J. Y.; Zhang, Z. F.; Shen, W. X.; Shen, C. L.; Qin, C. C.; Zheng, G. S.; Liu, K. K. et al. Carbon nanodots with nearly unity fluorescent efficiency realized via localized excitons. Adv. Sci. 2022, 9, 2203622.

    Article  CAS  Google Scholar 

  2. Wang, B. Y.; Lu, S. Y. The light of carbon dots: From mechanism to applications. Matter 2022, 5, 110–149.

    Article  Google Scholar 

  3. Đorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130.

    Article  PubMed  Google Scholar 

  4. Shi, Y. X.; Su, W.; Yuan, F. L.; Yuan, T.; Song, X. Z.; Han, Y. Y.; Wei, S. Y.; Zhang, Y.; Li, Y. C.; Li, X. H. et al. Carbon dots for electroluminescent light-emitting diodes: Recent progress and future prospects. Adv. Mater. 2023, 35, 2210699.

    Article  CAS  Google Scholar 

  5. Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today 2016, 11, 565–586.

    Article  CAS  Google Scholar 

  6. Shen, C. L.; Lou, Q.; Zang, J. H.; Liu, K. K.; Qu, S. N.; Dong, L.; Shan, C. X. Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging. Adv. Sci. 2020, 7, 1903525.

    Article  CAS  Google Scholar 

  7. Lou, Q.; Chen, N.; Zhu, J. Y.; Liu, K. K.; Li, C.; Zhu, Y. S.; Xu, W.; Chen, X.; Song, Z. J.; Liang, C. H. et al. Thermally enhanced and long lifetime red TADF carbon dots via multi-confinement and phosphorescence assisted energy transfer. Adv. Mater. 2023, 35, 2211858.

    Article  CAS  Google Scholar 

  8. Vallan, L.; Urriolabeitia, E. P.; Ruipérez, F.; Matxain, J. M.; Canton-Vitoria, R.; Tagmatarchis, N.; Benito, A. M.; Maser, W. K. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J. Am. Chem. Soc. 2018, 140, 12862–12869.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan, F. L.; Yuan, T.; Sui, L.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xue, S. S.; Li, P. F.; Sun, L.; An, L.; Qu, D.; Wang, X. Y.; Sun, Z. C. The formation process and mechanism of carbon dots prepared from aromatic compounds as precursors: A review. Small 2023, 19, 2206180.

    Article  CAS  Google Scholar 

  11. Bartolomei, B.; Bogo, A.; Amato, F.; Ragazzon, G.; Prato, M. Nuclear magnetic resonance reveals molecular species in carbon nanodot samples disclosing flaws. Angew. Chem., Int. Ed. 2022, 61, e202200038.

    Article  CAS  Google Scholar 

  12. Huang, C. S.; Feng, M. R.; Zhu, X. E.; Zhou, Q. Y.; Zeng, S. S.; Huang, Y. F.; Zhang, H. F. Polymer precursor strategy toward the precise synthesis of uniform hairy carbon dots with tunable sizes and size effects over their fluorescence. Macromolecules 2021, 54, 11497–11507.

    Article  CAS  Google Scholar 

  13. Chen, Y. L.; Spiering, A. J. H.; Karthikeyan, S.; Peters, G. W. M.; Meijer, E. W.; Sijbesma, R. P. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat. Chem. 2012, 4, 559–562.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, M. W.; Huang, J. G.; Fan, J. L.; Du, J. J.; Pu, K. Y.; Peng, X. J. Chemiluminescence for bioimaging and therapeutics: Recent advances and challenges. Chem. Soc. Rev. 2020, 49, 6800–6815.

    Article  CAS  PubMed  Google Scholar 

  15. Kagalwala, H. N.; Gerberich, J.; Smith, C. J.; Mason, R. P.; Lippert, A. R. Chemiluminescent 1,2-dioxetane iridium complexes for near-infrared oxygen sensing. Angew. Chem., Int. Ed. 2022, 61, e202115704.

    Article  CAS  Google Scholar 

  16. Shen, C. L.; Jiang, T. C.; Lou, Q.; Zhao, W. B.; Lv, C. F.; Zheng, G. S.; Liu, H. R.; Li, P. F.; Dai, L. L.; Liu, K. K. et al. Near-infrared chemiluminescent carbon nanogels for oncology imaging and therapy. SmartMat 2022, 3, 269–285.

    Article  CAS  Google Scholar 

  17. Yang, J.; Yin, W.; Van, R.; Yin, K. Y.; Wang, P.; Zheng, C.; Zhu, B. Y.; Ran, K.; Zhang, C.; Kumar, M. et al. Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo. Nat. Commun. 2020, 11, 4052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lyu, Y.; Pu, K. Y. Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv. Sci. 2017, 4, 1600481.

    Article  Google Scholar 

  19. Ouyang, Y.; Zhang, P.; Manis-Levy, H.; Paltiel, Y.; Willner, I. Transient dissipative optical properties of aggregated Au nanoparticles, CdSe/ZnS quantum dots, and supramolecular nucleic acid-stabilized Ag nanoclusters. J. Am. Chem. Soc. 2021, 143, 17622–17632.

    Article  CAS  PubMed  Google Scholar 

  20. Dong, S. Q.; Yuan, Z. Q.; Zhang, L. J.; Lin, Y. J.; Lu, C. Rapid screening of oxygen states in carbon quantum dots by chemiluminescence probe. Anal. Chem. 2017, 89, 12520–12526.

    Article  CAS  PubMed  Google Scholar 

  21. Zhen, X.; Zhang, C. W.; Xie, C.; Miao, Q. Q.; Lim, K. L.; Pu, K. Y. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 2016, 10, 6400–6409.

    Article  CAS  PubMed  Google Scholar 

  22. Augusto, F. A.; de Souza, G. A.; de Souza Júnior, S. P.; Khalid, M.; Baader, W. J. Efficiency of electron transfer initiated chemiluminescence. Photochem. Photobiol. 2013, 89, 1299–1317.

    Article  CAS  PubMed  Google Scholar 

  23. Shen, C. L.; Lou, Q.; Lv, C. F.; Zang, J. H.; Qu, S. N.; Dong, L.; Shan, C. X. Bright and multicolor chemiluminescent carbon nanodots for advanced information encryption. Adv. Sci. 2019, 6, 1802331.

    Article  Google Scholar 

  24. Zheng, G. S.; Shen, C. L.; Lou, Q.; Han, J. F.; Ding, Z. Z.; Deng, Y.; Wu, M. Y.; Liu, K. K.; Zang, J. H.; Dong, L. et al. Meter-scale chemiluminescent carbon nanodot films for temperature imaging. Mater. Horiz. 2022, 9, 2533–2541.

    Article  CAS  PubMed  Google Scholar 

  25. Shen, C. L.; Zheng, G. S.; Wu, M. Y.; Wei, J. Y.; Lou, Q.; Ye, Y. L.; Liu, Z. Y.; Zang, J. H.; Dong, L.; Shan, C. X. Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose. Nanophotonics 2020, 9, 3597–3604.

    Article  CAS  Google Scholar 

  26. Shen, C. L.; Lou, Q.; Lv, C. F.; Zheng, G. S.; Zang, J. H.; Jiang, T. C.; Cheng, Z.; Liu, K. K.; Niu, C. Y.; Dong, L. et al. Trigonal nitrogen activates high-brightness chemiluminescent carbon nanodots. ACS Mater. Lett. 2021, 3, 826–837.

    Article  CAS  Google Scholar 

  27. Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316.

    Article  CAS  Google Scholar 

  28. Rigodanza, F.; Burian, M.; Arcudi, F.; Đorđević, L.; Amenitsch, H.; Prato, M. Snapshots into carbon dots formation through a combined spectroscopic approach. Nat. Commun. 2021, 12, 2640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song, Y. B.; Zhu, S. J.; Zhang, S. T.; Fu, Y.; Wang, L.; Zhao, X. H.; Yang, B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 2015, 3, 5976–5984.

    Article  CAS  Google Scholar 

  30. Wang, B. Y.; Song, H. Q.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Ethanol-derived white emissive carbon dots: The formation process investigation and multi-color/white LEDs preparation. Nano Res. 2022, 15, 942–949.

    Article  CAS  Google Scholar 

  31. Tao, S. Y.; Zhou, C. J.; Kang, C. Y.; Zhu, S. J.; Feng, T. L.; Zhang, S. T.; Ding, Z. Y.; Zheng, C. Y.; Xia, C. L.; Yang, B. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots. Light: Sci. Appl. 2022, 11, 56.

    Article  CAS  PubMed  Google Scholar 

  32. Vacher, M.; Galvá; Ding, B. W.; Schramm, S.; Berraud-Pache, R.; Naumov, P.; Ferréu, Y. J.; Navizet, I.; Roca-Sanjuán, D. et al. Chemi- and bioluminescence of cyclic peroxides. Chem. Rev. 2018, 118, 6927–6974.

    Article  CAS  PubMed  Google Scholar 

  33. Dou, X. N.; Lin, Z.; Chen, H.; Zheng, Y. Z.; Lu, C.; Lin, J. M. Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method. Chem. Commun. 2013, 49, 5871–5873.

    Article  CAS  Google Scholar 

  34. Mao, D.; Wu, W. B.; Ji, S. L.; Chen, C.; Hu, F.; Kong, D. L.; Ding, D.; Liu, B. Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem 2017, 3, 991–1007.

    Article  CAS  Google Scholar 

  35. Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910

    Article  Google Scholar 

  36. Yang, H. Y.; Liu, Y. L.; Guo, Z. Y.; Lei, B. F.; Zhuang, J. L.; Zhang, X. J.; Liu, Z. M.; Hu, C. F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li, D.; Jing, P. T.; Sun, L. H.; An, Y.; Shan, X. Y.; Lu, X. H.; Zhou, D.; Han, D.; Shen, D. Z.; Zhai, Y. C. et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv. Mater. 2018, 30, 1705913.

    Article  Google Scholar 

  38. Li, D.; Liang, C.; Ushakova, E. V.; Sun, M. H.; Huang, X. D.; Zhang, X. Y.; Jing, P. T.; Yoo, S. J.; Kim, J. et al. Thermally activated upconversion near-infrared photoluminescence from carbon dots synthesized via microwave assisted exfoliation. Small 2019, 15, 1905050.

    Article  CAS  Google Scholar 

  39. Zhang, Q.; Wang, F. Q.; Wang, R. Y.; Liu, J. L.; Ma, Y. P. X.; Qin, X. R.; Zhong, X. X. Activating one/two-photon excited red fluorescence on carbon dots: Emerging n→π photon transition induced by amino protonation. Adv. Sci. 2023, 10, 2207566.

    Article  CAS  Google Scholar 

  40. Cao, M. Y.; Zhao, X. J.; Gong, X. Ionic liquid-assisted fast synthesis of carbon dots with strong fluorescence and their tunable multicolor emission. Small 2022, 18, 2106683.

    Article  CAS  Google Scholar 

  41. Zeng, Q. S.; Feng, T. L.; Tao, S. Y.; Zhu, S. J.; Yang, B. Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): The nomenclature. Light: Sci. Appl. 2021, 10, 142.

    Article  CAS  PubMed  Google Scholar 

  42. Ma, Z. Z.; Shi, Z. F.; Qin, C. C.; Cui, M. H.; Yang, D. W.; Wang, X. J.; Wang, L. T.; Ji, X. Z.; Chen, X.; Sun, J. L. et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 2020, 14, 4475–4486.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the National Natural Science Foundation of China (Nos. U2004168, 12074348, 11974317, 12261141661, and 62204223), the China Postdoctoral Science Foundation (No. 2022TQ0307), and the Natural Science Foundation of Henan Province (Nos. 212300410078 and 222102310664)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Long Shen, Qing Lou or Chong-Xin Shan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, GS., Shen, CL., Deng, Y. et al. Rational design multi-color-emissive chemiluminescent carbon nanodots in a single solvothermal reaction. Nano Res. 17, 4651–4660 (2024). https://doi.org/10.1007/s12274-024-6456-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6456-1

Keywords

Navigation