Skip to main content
Log in

Exfoliation of bulk 2H-MoS2 into bilayer 1T-phase nanosheets via ether-induced superlattices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The exfoliation of bulk 2H-molybdenum disulfide (2H-MoS2) into few-layer nanosheets with 1T-phase and controlled layers represents a daunting challenge towards the device applications of MoS2. Conventional ion intercalation assisted exfoliation needs the use of hazardous n-butyllithium and/or elaborate control of the intercalation potential to avoid the decomposition of the MoS2. This work reports a facile strategy by intercalating Li ions electrochemically with ether-based electrolyte into the van der Waals (vdW) channels of MoS2, which successfully avoids the decomposition of MoS2 at low potentials. The co-intercalation of Li+ and the ether solvent into MoS2 makes a first-order phase transformation, forming a superlattice phase, which preserves the layered structure and hence enables the exfoliation of bulk 2H-MoS2 into bilayer nanosheets with 1T-phase. Compared with the pristine 2H-MoS2, the bilayer 1T-MoS2 nanosheets exhibit better electrocatalytic performance for the hydrogen evolution reaction (HER). This facile method should be easily extended to the exfoliation of various transition metal dichalcogenides (TMDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Article  CAS  PubMed  Google Scholar 

  2. Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.

    Article  CAS  PubMed  Google Scholar 

  3. Yoo, H. D.; Liang, Y. L.; Dong, H.; Lin, J. H.; Wang, H.; Liu, Y. S.; Ma, L.; Wu, T. P.; Li, Y. F.; Ru, Q. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 2017, 8, 339.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen, D. Y.; Chen, W. X.; Ma, L.; Ji, G.; Chang, K.; Lee, J. Y. Graphene-like layered metal dichalcogenide/graphene composites: Synthesis and applications in energy storage and conversion. Mater. Today 2014, 17, 184–193.

    Article  CAS  Google Scholar 

  5. Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

    Article  CAS  PubMed  Google Scholar 

  6. Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.

    Article  CAS  PubMed  Google Scholar 

  7. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  CAS  PubMed  Google Scholar 

  8. Jellinek, F.; Brauer, G.; Müller, H. Molybdenum and niobium sulphides. Nature 1960, 185, 376–377.

    Article  CAS  Google Scholar 

  9. Zhang, X.; Lai, Z. C.; Tan, C. L.; Zhang, H. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications. Angew. Chem., Int. Ed. 2016, 55, 8816–8838.

    Article  CAS  Google Scholar 

  10. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    Article  CAS  PubMed  Google Scholar 

  12. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

    Article  CAS  PubMed  Google Scholar 

  13. Wu, W. Z.; Wang, L.; Yu, R. M.; Liu, Y. Y.; Wei, S. H.; Hone, J.; Wang, Z. L. Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 2016, 28, 8463–8468.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

    Article  CAS  PubMed  Google Scholar 

  16. Miremadi, B. K.; Morrison, S. R. High activity catalyst from exfoliated MoS2. J. Catal. 1987, 103, 334–345.

    Article  CAS  Google Scholar 

  17. Ye, L. N.; Wu, C. Z.; Guo, W.; Xie, Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: One-step synthesis and their electrochemical hydrogen storage properties. Chem. Commun. 2006, 4738–4740.

  18. Wang, T. Y.; Chen, S. Q.; Pang, H.; Xue, H. G.; Yu, Y. MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 2017, 4, 1600289.

    Article  Google Scholar 

  19. Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209–231.

    Article  CAS  Google Scholar 

  20. Deng, Z. N.; Jiang, H.; Hu, Y. J.; Liu, Y.; Zhang, L.; Liu, H. L.; Li, C. Z. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv. Mater. 2017, 29, 1603020.

    Article  Google Scholar 

  21. Zuo, X. X.; Chang, K.; Zhao, J.; Xie, Z. Z.; Tang, H. W.; Li, B.; Chang, Z. R. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 2016, 4, 51–58.

    Article  CAS  Google Scholar 

  22. Yang, E.; Ji, H.; Jung, Y. Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J. Phys. Chem. C 2015, 119, 26374–26380.

    Article  CAS  Google Scholar 

  23. Brent, J. R.; Savjani, N.; O’Brien, P. Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog. Mater. Sci. 2017, 89, 411–478.

    Article  CAS  Google Scholar 

  24. Zhu, X. L.; Su, Z. P.; Wu, C.; Cong, H. J.; Ai, X. P.; Yang, H. X.; Qian, J. F. Exfoliation of MoS2 nanosheets enabled by a redox-potential-matched chemical lithiation reaction. Nano Lett. 2022, 22, 2956–2963.

    Article  CAS  PubMed  Google Scholar 

  25. Fan, X. B.; Xu, P. T.; Li, Y. C.; Zhou, D. K.; Sun, Y. F.; Nguyen, M. A. T.; Terrones, M.; Mallouk, T. E. Controlled exfoliation of MoS2 crystals into trilayer nanosheets. J. Am. Chem. Soc. 2016, 138, 5143–5149.

    Article  CAS  PubMed  Google Scholar 

  26. Mohammadpour, Z.; Abdollahi, S. H.; Safavi, A. Sugar-based natural deep eutectic mixtures as green intercalating solvents for high-yield preparation of stable MoS2 nanosheets: Application to electrocatalysis of hydrogen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 5896–5906.

    Article  CAS  Google Scholar 

  27. Benavente, E.; Santa Ana, M. A.; Mendizábal, F.; González, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 2002, 224, 87–109.

    Article  CAS  Google Scholar 

  28. Lin, D. M.; Shi, X. L.; Li, K. K.; Wang, M.; Sun, S.; Wu, J. W.; Zhou, L. M.; Chen, G. H.; Zhang, T. Y. Ether-induced phase transition toward stabilized layered structure of MoS2 with extraordinary sodium storage performance. ACS Mater. Lett. 2022, 4, 1341–1349.

    Article  CAS  Google Scholar 

  29. Yu, X. Q.; Pan, H. L.; Wan, W.; Ma, C.; Bai, J. M.; Meng, Q. P.; Ehrlich, S. N.; Hu, Y. S.; Yang, X. Q. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. Nano Lett. 2013, 13, 4721–4727.

    Article  CAS  PubMed  Google Scholar 

  30. Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826–4830.

    Article  CAS  PubMed  Google Scholar 

  31. Chang, K.; Geng, D. S.; Li, X. F.; Yang, J. L.; Tang, Y. J.; Cai, M.; Li, R. Y.; Sun, X. L. Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv. Energy Mater. 2013, 3, 839–844.

    Article  CAS  Google Scholar 

  32. Fang, X. P.; Hua, C. X.; Guo, X. W.; Hu, Y. S.; Wang, Z. X.; Gao, X. P.; Wu, F.; Wang, J. Z.; Chen, L. Q. Lithium storage in commercial MoS2 in different potential ranges. Electrochim. Acta 2012, 81, 155–160.

    Article  CAS  Google Scholar 

  33. Xiong, F.; Wang, H. T.; Liu, X. G.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y. Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 2015, 15, 6777–6784.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693–6697.

    Article  CAS  PubMed  Google Scholar 

  35. Enyashin, A. N.; Seifert, G. Density-functional study of LixMoS2 intercalates (0 ≤ x ≤ 1). Comput. Theor. Chem. 2012, 999, 13–20.

    Article  CAS  Google Scholar 

  36. Rocquefelte, X.; Boucher, F.; Gressier, P.; Ouvrard, G.; Blaha, P.; Schwarz, K. Mo cluster formation in the intercalation compound LiMoS2. Phys. Rev. B 2000, 62, 2397–2400.

    Article  CAS  Google Scholar 

  37. Petkov, V.; Billinge, S. J. L.; Larson, P.; Mahanti, S. D.; Vogt, T.; Rangan, K. K.; Kanatzidis, M. G. Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of LiMoS2. Phys. Rev. B 2002, 65, 092105.

    Article  Google Scholar 

  38. Rocquefelte, X.; Bouessay, I.; Boucher, F.; Gressier, P.; Ouvrard, G. Synergetic theoretical and experimental structure determination of nanocrystalline materials: Study of LiMoS2. J. Solid State Chem. 2003, 175, 380–383.

    Article  CAS  Google Scholar 

  39. Wu, Z. C.; Li, B. E.; Xue, Y. J.; Li, J. J.; Zhang, Y. L.; Gao, F. Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors. J. Mater. Chem. A 2015, 3, 19445–19454.

    Article  CAS  Google Scholar 

  40. Azhagurajan, M.; Kajita, T.; Itoh, T.; Kim, Y. G.; Itaya, K. In situ visualization of lithium ion intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution. J. Am. Chem. Soc. 2016, 138, 3355–3361.

    Article  CAS  PubMed  Google Scholar 

  41. Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 2013, 25, 3979–3984.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, L.; Sun, D.; Kang, J.; Feng, J.; Bechtel, H. A.; Wang, L. W.; Cairns, E. J.; Guo, J. H. Electrochemical reaction mechanism of the MoS2 electrode in a lithium-ion cell revealed by in situ and operando X-ray absorption spectroscopy. Nano Lett. 2018, 18, 1466–1475.

    Article  CAS  PubMed  Google Scholar 

  43. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  CAS  Google Scholar 

  44. Jin, Q.; Liu, N.; Chen, B. H.; Mei, D. H. Mechanisms of semiconducting 2H to metallic 1T phase transition in two-dimensional MoS2 nanosheets. J. Phys. Chem. C 2018, 122, 28215–28224.

    Article  CAS  Google Scholar 

  45. Du, X. Q.; Guo, X. Y.; Huang, J. Q.; Lu, Z. H.; Tan, H.; Huang, J. Q.; Zhu, Y.; Zhang, B. Exploring the structure evolution of MoS2 upon Li/Na/K ion insertion and the origin of the unusual stability in potassium ion batteries. Nanoscale Horiz. 2020, 5, 1618–1627.

    Article  CAS  PubMed  Google Scholar 

  46. Du, X. Q.; Huang, J. Q.; Guo, X. Y.; Lin, X. Y.; Huang, J. Q.; Tan, H.; Zhu, Y.; Zhang, B. Preserved layered structure enables stable cyclic performance of MoS2 upon potassium insertion. Chem. Mater. 2019, 31, 8801–8809.

    Article  CAS  Google Scholar 

  47. Sharma, C. H.; Surendran, A. P.; Varghese, A.; Thalakulam, M. Stable and scalable 1T MoS2 with low temperature-coefficient of resistance. Sci. Rep. 2018, 8, 12463.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sun, D.; Huang, D.; Wang, H. Y.; Xu, G. L.; Zhang, X. Y.; Zhang, R.; Tang, Y. G.; Abd Ei-Hady, D.; Alshitari, W.; Saad Al-Bogami, A. et al. 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 2019, 61, 361–369.

    Article  CAS  Google Scholar 

  49. Wang, S.; Zhang, Y. H.; Zhao, D. Y.; Li, J.; Kang, H.; Zhao, S. W.; Jin, T. T.; Zhang, J. X.; Xue, Z. Y.; Wang, Y. et al. Fast and controllable synthesis of AB-stacked bilayer MoS2 for photoelectric detection. 2D Mater. 2022, 9, 015016.

    Article  CAS  Google Scholar 

  50. Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

    Article  CAS  PubMed  Google Scholar 

  51. Lei, Z. D.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 2018, 8, 1703482.

    Article  Google Scholar 

  52. Pang, S. Y.; Io, W. F.; Wong, L. W.; Zhao, J.; Hao, J. H. Direct and in situ growth of 1T′ MoS2 and 1T MoSe2 on electrochemically synthesized MXene as an electrocatalyst for hydrogen generation. Nano Energy 2022, 103, 107835.

    Article  CAS  Google Scholar 

  53. Qin, Y.; Yu, T. T.; Deng, S. H.; Zhou, X. Y.; Lin, D. M.; Zhang, Q.; Jin, Z. Y.; Zhang, D. F.; He, Y. B.; Qiu, H. J. et al. RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nat. Commun. 2022, 13, 3784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the National Natural Science Foundation of China (No. 12374003), the Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515012349), the Shenzhen Science and Technology Program (Nos. RCBS20200714114920129 and JCYJ20220531095208019), and the Guangzhou Municipal Science and Technology Project (No. 2023A03J0003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaikai Li or Tong-Yi Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Lin, D., Xiao, Z. et al. Exfoliation of bulk 2H-MoS2 into bilayer 1T-phase nanosheets via ether-induced superlattices. Nano Res. 17, 5705–5711 (2024). https://doi.org/10.1007/s12274-024-6446-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6446-3

Keywords

Navigation