Skip to main content
Log in

Rational design of biodegradable semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photodynamic therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Semiconducting polymer nanoparticles (SPNs) have shown great promise in second near-infrared window (NIR-II) phototheranostics. However, the issue of long metabolic time significantly restricts the clinical application of SPNs. In this study, we rationally designed a biodegradable SPN (BSPN50) for NIR-II fluorescence imaging-guided photodynamic therapy (PDT). BSPN50 is prepared by encapsulating a biodegradable SP (BSP50) with an amphiphilic copolymer F-127. BSP50 is composed of NIR-II fluorescent diketopyrrolopyrrole (DPP) segment and degradable poly(phenylenevinylene) (PPV) segment with the ratio of 50/50. BSPN50 has both satisfactory degradability under myeloperoxidase (MPO)/hydrogen peroxide (H2O2) and NIR-II fluorescence emission upon 808 nm laser excitation. Furthermore, BSPN50 shows good photodynamic efficacy under 808 nm laser irradiation. BSPN50 shows a faster degradation rate than BSPN100 which has no PPV segment both in vitro and in vivo. In addition, BSPN50 can effectively diagnose tumor via NIR-II fluorescence imaging and inhibit the tumor growth by PDT. Thus, our study provides a rational approach to construct biodegradable nanoplatforms for efficient tumor NIR-II phototheranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng, G. X.; Zhang, G. Q.; Ding, D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev. 2020, 49, 8179–8234.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, C.; Ou, H. L.; Liu, R. H.; Ding, D. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics. Adv. Mater. 2020, 32, 1806331.

    Article  CAS  Google Scholar 

  3. Yin, X. R.; Cheng, Y. F.; Feng, Y.; Stiles, W. R.; Park, S. H.; Kang, H.; Choi, H. S. Phototheranostics for multifunctional treatment of cancer with fluorescence imaging. Adv. Drug Deliv. Rev. 2022, 189, 114483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He, S. S.; Cheng, P. H.; Pu, K. Y. Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 2023, 7, 281–297.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, H.; Yi, W. R.; Li, A. G.; Wang, B.; Ding, Q. H.; Xue, L. R.; Zeng, X. D.; Feng, Y. Z.; Li, Q. Q.; Wang, T. et al. Specific Small-Molecule NIR-II Fluorescence Imaging of Osteosarcoma and Lung Metastasis. Adv. Healthcare Mater. 2020, 9, 1901224.

    Article  CAS  Google Scholar 

  6. Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.

    Article  CAS  Google Scholar 

  7. Shou, K. Q.; Qu, C. R.; Sun, Y.; Chen, H.; Chen, S.; Zhang, L.; Xu, H. B.; Hong, X. C.; Yu, A. X.; Cheng, Z. Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe. Adv. Funct. Mater. 2017, 27, 1700995.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhao, J. Y.; Zhong, D.; Zhou, S. B. NIR-I-to-NIR- II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 2018, 6, 349–365.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, Y.; Pei, P.; Lei, Z. H.; Zhang, X.; Yin, D. R.; Zhang, F. A promising NIR-II fluorescent sensor for peptide-mediated long-term monitoring of kidney dysfunction. Angew. Chem., Int. Ed. 2021, 60, 15809–15815.

    Article  CAS  Google Scholar 

  10. Zeng, X. D.; Xie, L. R.; Chen, D. L.; Li, S. S.; Nong, J. X.; Wang, B.; Tang, L.; Li, Q. Q.; Li, Y.; Deng, Z. X. et al. A bright NIR-II fluorescent probe for breast carcinoma imaging and image-guided surgery. Chem. Commun. 2019, 55, 14287–14290.

    Article  CAS  Google Scholar 

  11. Lan, Q. C.; Yu, P.; Yan, K.; Li, X. M.; Zhang, F.; Lei, Z. H. Polymethine molecular platform for ratiometric fluorescent probes in the second near-infrared window. J. Am. Chem. Soc. 2022, 144, 21010–21015.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, N.; Song, S.; Liu, C.; Ren, J.; Wang, X.; Zhu, S. J.; Yu, C. An aza-BODIPY-based NIR-II luminogen enables efficient phototheranostics. Biomater. Sci. 2022, 10, 4815–4821.

    Article  CAS  PubMed  Google Scholar 

  13. Sun, P. F.; Jiang, X. Y.; Sun, B.; Wang, H.; Li, J. W.; Fan, Q. L.; Huang, W. Elecfron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy. Biomaterials 2022, 280, 121319.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, Y. Y.; Pu, K. Y. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 2018, 51, 1840–1849.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, X.; Wu, M.; Li, H. Z.; Jiang, J. L.; Zhou, S. S.; Chen, W. Z.; Xie, C.; Zhen, X.; Jiang, X. Q. Enhancing penetration ability of semiconducting polymer nanoparticles for sonodynamic therapy of large solid tumor. Adv. Sci. (Weinh.) 2022, 9, e2104125.

    PubMed  Google Scholar 

  16. Li, J. C.; Zhen, X.; Lyu, Y.; Jiang, Y. Y.; Huang, J. G.; Pu, K. Y. Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 2018, 12, 8520–8530.

    Article  CAS  PubMed  Google Scholar 

  17. Lin, H. R.; Bai, H. T.; Yang, Z. W.; Shen, Q.; Li, M. Y.; Huang, Y. M.; Lv, F. T.; Wang, S. Conjugated polymers for biomedical applications. Chem. Commun. 2022, 58, 7232–7244.

    Article  CAS  Google Scholar 

  18. Wang, W. Q.; Zhang, X.; Ni, X. Y.; Zhou, W.; Xie, C.; Huang, W.; Fan, Q. L. Semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photothermal/thermodynamic combination therapy. Biomater. Sci. 2022, 10, 846–853.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, S. J.; Ou, H. L.; Li, Y. Y.; Zhang, H. K.; Liu, J. K.; Lu, X. F.; Kwok, R. T. K.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. Planar and twisted molecular structure leads to the high brightness of semiconducting polymer nanoparticles for NIR-IIa fluorescence imaging. J. Am. Chem. Soc. 2020, 142, 15146–15156.

    Article  CAS  PubMed  Google Scholar 

  20. Tang, Y. F.; Li, Y. Y.; Lu, X. M.; Hu, X. M.; Zhao, H.; Hu, W. B.; Lu, F.; Fan, Q. L.; Huang, W. Bio- erasable intermolecular donor-acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II fluorescence imaging. Adv. Funct. Mater. 2019, 29, 1807376.

    Article  Google Scholar 

  21. Tang, Y. F.; Li, Y. Y.; Wang, Z.; Pei, F.; Hu, X. M.; Ji, Y.; Li, X.; Zhao, H.; Hu, W. B.; Lu, X. M. et al. Organic semiconducting nanoprobe with redox-activatable NIR-II fluorescence for in vivo real-time monitoring of drug toxicity. Chem. Commun. 2019, 55, 27–30.

    Article  CAS  Google Scholar 

  22. Chen, Y.; Yu, H. L.; Wang, Y. S.; Sun, P. F.; Fan, Q. L.; Ji, M. Thiadiazoloquinoxaline derivative-based NIR-II organic molecules for NIR-II fluorescence imaging and photothermal therapy. Biomater. Sei. 2022, 10, 2772–2788.

    Article  Google Scholar 

  23. Xie, C.; Zhou, W.; Zeng, Z. L.; Fan, Q. L.; Pu, K. Y. Gaffted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chem. Sci. 2020, 17, 10553–10570.

    Article  Google Scholar 

  24. Zhen, X.; Pu, K. Y.; Jiang, X. Q. Photoacoustic Imaging and Photothermal therapy of semiconducting polymer nanoparticles: Signal amplification and second near-infrared construction. Small 2021, 17, 2004723.

    Article  CAS  Google Scholar 

  25. Jiang, Y. Y.; Upputuri, P. K.; Xie, C.; Zeng, Z. L.; Sharma, A.; Zhen, X.; Li, J. C.; Huang, J. G.; Pramanik, M.; Pu, K. Y. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 2019, 31, 1808166.

    Article  Google Scholar 

  26. Yang, G. B.; Phua, S. Z. F.; Bindra, A. K.; Zhao, Y. L. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv. Mater. 2019, 31, 1805730.

    Article  Google Scholar 

  27. Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem., Int. Ed. 2013, 52, 3086–3109.

    Article  CAS  Google Scholar 

  28. Jiang, Y. Y.; Li, J. C.; Zeng, Z. L.; Xie, C.; Lyu, Y.; Pu, K. Y. Organic photodynamic nanoinhibitor for synergistic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 8161–8165.

    Article  CAS  Google Scholar 

  29. Feng, L. H.; Zhu, C. L.; Yuan, H. X.; Liu, L. B.; Lv, F. T.; Wang, S. Conjugated polymer nanoparticles: Preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 2013, 42, 6620–6633.

    Article  CAS  PubMed  Google Scholar 

  30. Li, J. C.; Rao, J. H.; Pu, K. Y. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018, 155, 217–235.

    Article  CAS  PubMed  Google Scholar 

  31. Xie, C.; Zhen, X.; Miao, Q. Q.; Lyu, Y.; Pu, K. Y. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 2018, 30, 1801331.

    Article  Google Scholar 

  32. Lyu, Y.; Zeng, J. F.; Jiang, Y. Y.; Zhen, X.; Wang, T.; Qiu, S. S.; Lou, X.; Gao, M. Y.; Pu, K. Y. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Nano 2018, 12, 1801–1810.

    Article  CAS  PubMed  Google Scholar 

  33. Miao, Q. Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H. W.; Liu, X. G.; Jokerst, J. V.; Pu, K. Y. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102–1110.

    Article  CAS  PubMed  Google Scholar 

  34. Huang, H. Y.; Xie, W. S.; Wan, Q.; Mao, L. C.; Hu, D. N.; Sun, H.; Zhang, X. Y.; Wei, Y. A self-degradable conjugated polymer for photodynamic therapy with reliable postoperative safety. Adv. Sci. (Weinh.) 2022, 9, 2104101.

    CAS  PubMed  Google Scholar 

  35. Guo, C. R.; Sileikaite, I.; Davies, M. J.; Hawkins, C. L. Myeloperoxidase modulates hydrogen peroxide mediated cellular damage in murine macrophages. Antioxidants (Basel) 2020, 9, 1255.

    Article  CAS  PubMed  Google Scholar 

  36. Cui, D.; Xie, C.; Li, J. C.; Lyu, Y.; Pu, K. Y. Semiconducting photosensitizer-incorporated copolymers as near-infrared afterglow nanoagents for tumor imaging. Adv. Healthcare Mater. 2018, 7, 1800329.

    Article  Google Scholar 

  37. Emrullahoǧlu, M.; Üçüncü, M.; Karakus, E. A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid. Chem. Commun. 2013, 49, 7836–7838.

    Article  Google Scholar 

  38. Yin, C.; Zhen, X.; Fan, Q. L.; Huang, W.; Pu, K. Y. Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite. ACS Nano 2017, 11, 4174–4182.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22174070 and 22205115), Natural Science Foundation of Jiangsu Province (No. BK20230060), Natural Science Foundation of Jiangsu University (No. 21KJB150022), the Research startup fund of NJUPT (no. NY220149), Natural Science Foundation of NJUPT (no. NY221088), the Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (Nos. GZR2022010012 and GZR2023010022), and the Synergetic Innovation Center for Organic Electronics and Information Displays for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Xie or Quli Fan.

Electronic Supplementary Material

12274_2024_6434_MOESM1_ESM.pdf

Rational design of biodegradable semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photodynamic therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Shen, J., Xu, Z. et al. Rational design of biodegradable semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photodynamic therapy. Nano Res. 17, 5399–5408 (2024). https://doi.org/10.1007/s12274-024-6434-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6434-7

Keywords

Navigation