Skip to main content
Log in

Ultrathin two-dimensional medium-entropy oxide as a highly efficient and stable electrocatalyst for oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Medium-entropy oxides (MEOs) with broad compositional tunability and entropy-driven structural stability, are receiving booming attention as a promising candidate for oxygen evolution reaction (OER) electrocatalysts. Meanwhile, ultrathin two-dimensional (2D) nanostructure offers extremely large specific surface area and is therefore considered to be an ideal catalyst structure. However, it remains a grant challenge to synthesize ultrathin 2D MEOs due to distinct nucleation and growth kinetics of constituent multimetallic elements in 2D anisotropic systems. In this work, an ultrathin 2D MEO (MnFeCoNi)O was successfully synthesized by a facile and low-temperature ionic layer epitaxy method. Benefiting from multi-metal synergistic effects within ultrathin 2D nanostructure, this 2D MEO (MnFeCoNi)O revealed excellent OER electrocatalytic performance with a quite low overpotential of 117 mV at 10 mA·cm−2 and an impressive stability for 120 h continuous operation with only 6.9% decay. Especially, the extremely high mass activity (5584.3 A·g−1) was three orders of magnitude higher than benchmark RuO2 (3.4 A·g−1) at the same overpotential of 117 mV. This work opens up a new avenue for developing highly efficient and stable electrocatalysts by creating 2D nanostructured MEOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teitsworth, T. S.; Hill, D. J.; Litvin, S. R.; Ritchie, E. T.; Park, J. S.; Custer, J. P. Jr.; Taggart, A. D.; Bottum, S. R.; Morley, S. E.; Kim, S. et al. Water splitting with silicon p-i-n superlattices suspended in solution. Nature 2023, 614, 270–274.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Liu, Y. D.; Sakthivel, T.; Hu, F.; Tian, Y. H.; Wu, D. S.; Ang, E. H.; Liu, H.; Guo, S. W.; Peng, S. J.; Dai, Z. F. Enhancing the d/p-band center proximity with amorphous–crystalline interface coupling for boosted pH-robust water electrolysis. Adv. Energy Mater. 2023, 13, 2203797.

    Article  CAS  Google Scholar 

  3. Wei, L. T.; Du, M. Y.; Zhao, R.; Lv, F.; Li, L. B.; Zhang, L.; Zhou, D.; Su, J. Z. High-valence Mo doping for highly promoted water oxidation of NiFe (oxy)hydroxide. J. Mater. Chem. A 2022, 10, 23790–23798.

    Article  CAS  Google Scholar 

  4. Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, A. M.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346–3354.

    Article  CAS  Google Scholar 

  5. Righi, G.; Plescher, J.; Schmidt, F. P.; Campen, R. K.; Fabris, S.; Knop-Gericke, A.; Schlögl, R.; Jones, T. E.; Teschne, D.; Piccinin, S. On the origin of multihole oxygen evolution in haematite photoanodes. Nat. Catal. 2022, 5, 888–899.

    Article  CAS  Google Scholar 

  6. Chen, Z. L.; Yang, H. Y.; Mebs, S.; Dau, H.; Driess, M.; Wang, Z. W.; Kang, Z. H.; Menezes, P. W. Reviving oxygen evolution electrocatalysis of bulk La-Ni intermetallics via gaseous hydrogen engineering. Adv. Mater. 2023, 35, 2208337.

    Article  CAS  Google Scholar 

  7. Chen, S. Y.; Zhang, S. S.; Guo, L.; Pan, L.; Shi, C. X.; Zhang, X. W.; Huang, Z. F.; Yang, G. D.; Zou, J. J. Reconstructed Ir-O-Mo species with strong Brønsted acidity for acidic water oxidation. Nat. Commun. 2023, 14, 4127.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, X. Y.; Lu, H. L.; Zhu, S. L.; Cui, Z. D.; Li, Z. Y.; Wu, S. L.; Xu, W. C.; Liang, Y. Q.; Long, G. K.; Jiang, H. Alloying-triggered phase engineering of NiFe system via laser-assisted Al incorporation for full water splitting. Angew. Chem., Int. Ed. 2023, 62, e202300800.

    Article  CAS  Google Scholar 

  9. Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 2021, 6, 1054–1066.

    Article  ADS  CAS  Google Scholar 

  10. Li, T. Y.; Yao, Y. G.; Ko, B. H.; Huang, Z. N.; Dong, Q.; Gao, J. L.; Chen, W.; Li, J. G.; Li, S. K.; Wang, X. Z. et al. Carbon-supported high-entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2010561.

    Article  CAS  Google Scholar 

  11. Wu, H.; Lu, Q.; Li, Y. J.; Wang, J. J.; Li, Y. B.; Jiang, R.; Zhang, J. F.; Zheng, X. R.; Han, X. P.; Zhao, N. Q. et al. Rapid Joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts. Nano Lett. 2022, 22, 6492–6500.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Sarkar, A.; Wang, Q. S.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236.

    Article  Google Scholar 

  13. Pei, Y.; Chen, Q.; Wang, M. Y.; Zhang, P. J.; Ren, Q. Y.; Qin, J. K.; Xiao, P. H.; Song, L.; Chen, Y.; Yin, W. et al. A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries. Nat. Commun. 2022, 13, 6158.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liao, Y. T.; Zhu, R. T.; Zhang, W. J.; Zhu, H. Y.; Sun, Y.; Chen, J. L.; Dong, Z. H.; Lv, R. H. Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-6215-8.

  15. Wu, L.; Shen, X. P.; Ji, Z. Y.; Yuan, J. R.; Yang, S. K.; Zhu, G. X.; Chen, L. Z.; Kong, L. R.; Zhou, H. B. Facile synthesis of medium-entropy metal sulfides as high-efficiency electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2023, 33, 2208170.

    Article  CAS  Google Scholar 

  16. Wang, D. D.; Liu, Z. J.; Du, S. Q.; Zhang, Y. Q.; Li, H.; Xiao, Z. H.; Chen, W.; Chen, R.; Wang, Y. Y.; Zou, Y. Q. et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 2019, 7, 24211–24216.

    Article  CAS  Google Scholar 

  17. Wang, Y. Z.; Zhang, Z. Y.; Mao, Y. C.; Wang, X. D. Two-dimensional nonlayered materials for electrocatalysis. Energy Environ. Sci. 2020, 13, 3993–4016.

    Article  CAS  Google Scholar 

  18. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, B. S.; Du, J. L.; Yu, H. H.; Hong, M. Y.; Kang, Z.; Zhang, Z.; Zhang, Y. The coupling effect characterization for van der Waals structures based on transition metal dichalcogenides. Nano Res. 2021, 14, 1734–1751.

    Article  CAS  Google Scholar 

  20. Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

    Article  CAS  Google Scholar 

  21. Ou, Y.; Kang, Z.; Liao, Q. L.; Gao, S. H.; Zhang, Z.; Zhang, Y. Point defect induced intervalley scattering for the enhancement of interlayer electron transport in bilayer MoS2 homojunctions. Nanoscale 2020, 12, 9859–9865.

    Article  CAS  PubMed  Google Scholar 

  22. Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, Y. H.; Wang, Y. Z.; Dong, Y. T.; Carlos, C.; Li, J.; Zhang, Z. Y.; Li, T.; Shao, Y.; Yan, S.; Gu, L. et al. Quasi-two-dimensional earth-abundant bimetallic electrocatalysts for oxygen evolution reactions. ACS Energy Lett. 2021, 6, 3367–3375.

    Article  CAS  Google Scholar 

  24. Yan, G. Y.; Wang, Y. Z.; Zhang, Z. Y.; Dong, Y. T.; Wang, J. Y.; Carlos, C.; Zhang, P.; Cao, Z. Q.; Mao, Y. C.; Wang, X. D. Nanoparticle-decorated ultrathin La2O3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions. Nano-Micro Lett. 2020, 12, 49.

    Article  ADS  CAS  Google Scholar 

  25. Tao, L.; Sun, M. Z.; Zhou, Y.; Luo, M. C.; Lv, F.; Li, M. G.; Zhang, Q. H.; Gu, L.; Huang, B. L.; Guo, S. J. A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 2022, 144, 10582–10590.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Z. Y.; Carlos, C.; Wang, Y. Z.; Dong, Y. T.; Yin, X.; German, L.; Berg, K. J.; Bu, W.; Wang, X. D. Nucleation kinetics and structure evolution of quasi-two-dimensional ZnO at the air-water interface: An in situ time-resolved grazing incidence X-ray scattering study. Nano Lett. 2022, 22, 3040–3046.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Yin, X.; Wang, Y. Z.; Chang, T. H.; Zhang, P.; Li, J.; Xue, P. P.; Long, Y.; Shohet, J. L.; Voyles, P. M.; Ma, Z. Q. et al. Memristive behavior enabled by amorphous–crystalline 2D oxide heterostructure. Adv. Mater. 2020, 32, 2000801.

    Article  CAS  Google Scholar 

  28. Wang, Y. Z.; Shi, Y. Q.; Zhang, Z. Y.; Carlos, C.; Zhang, C. Y.; Bhawnani, K.; Li, J.; Wang, J. Y.; Voyles, P. M.; Szlufarska, I. et al. Bioinspired synthesis of quasi-two-dimensional monocrystalline oxides. Chem. Mater. 2019, 31, 9040–9048.

    Article  CAS  Google Scholar 

  29. Wang, F.; Seo, J. H.; Luo, G. F.; Starr, M. B.; Li, Z. D.; Geng, D. L.; Yin, X.; Wang, S. Y.; Fraser, D. G.; Morgan, D. et al. Nanometrethick single-crystalline nanosheets grown at the water–air interface. Nat. Commun. 2016, 7, 10444.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan, G. Y.; Wang, Y. Z.; Zhang, Z. Y.; Li, J.; Carlos, C.; German, L. N.; Zhang, C. Y.; Wang, J. Y.; Voyles, P. M.; Wang, X. D. Enhanced ferromagnetism from organic-cerium oxide hybrid ultrathin nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 44601–44608.

    Article  CAS  PubMed  Google Scholar 

  31. Koebel, M.; Strutz, E. O. Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: Thermochemical and practical aspects. Ind. Eng. Chem. Res. 2003, 42, 2093–2100.

    Article  Google Scholar 

  32. Yan, G. Y.; Wu, T.; Xing, S. M.; Chen, F.; Zhao, B. W.; Gao, W. J. Ultrathin Ce-doped La2O3 nanofilm electrocatalysts for efficient oxygen evolution reactions. Nanotechnology 2022, 33, 245405.

    Article  ADS  Google Scholar 

  33. Zhang, H. H.; Yang, D.; Ma, T. Y.; Lin, H.; Jia, B. H. Flash-induced ultrafast production of graphene/MnO with extraordinary supercapacitance. Small Methods 2021, 5, 2100225.

    Article  CAS  Google Scholar 

  34. Liao, Q. Y.; Li, N.; Cui, H.; Wang, C. X. Vertically-aligned graphene@MnO nanosheets as binder-free high-performance electrochemical pseudocapacitor electrodes. J. Mater. Chem. A 2013, 1, 13715–13720.

    Article  CAS  Google Scholar 

  35. Miao, K. H.; Jiang, W. D.; Chen, Z. Q.; Luo, Y.; Xiang, D.; Wang, C. H.; Kang, X. W. Hollow-structured and polyhedron-shaped high entropy oxide toward highly active and robust oxygen evolution reaction in a full pH range. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202308490.

  36. Wu, M. J.; Zhang, G. X.; Tong, H.; Liu, X. H.; Du, L.; Chen, N.; Wang, J.; Sun, T. X.; Regier, T.; Sun, S. H. Cobalt(II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy 2021, 79, 105409.

    Article  CAS  Google Scholar 

  37. Peck, M. A.; Langell, M. A. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 2012, 24, 4483–4490.

    Article  CAS  Google Scholar 

  38. Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 20253–20258.

    Article  CAS  Google Scholar 

  39. Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q. S.; Talasila, G.; De Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H. et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Cui, M. J.; Yang, C. P.; Li, B. Y.; Dong, Q.; Wu, M. L.; Hwang, S.; Xie, H.; Wang, X. Z.; Wang, G. F.; Hu, L. B. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2002887.

    Article  CAS  Google Scholar 

  41. Zhang, X., Yan, F.; Ma, X. Z.; Zhu, C. L.; Wang, Y.; Xie, Y.; Chou, S. L.; Huang, Y. J.; Chen, Y. J. Regulation of morphology and electronic structure of FeCoNi layered double hydroxides for highly active and stable water oxidization catalysts. Adv. Energy Mater. 2021, 11, 2102141.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (No. 2021JBM019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyuan Yan.

Electronic Supplementary Material

12274_2024_6421_MOESM1_ESM.pdf

Ultrathin two-dimensional medium-entropy oxide as a highly efficient and stable electrocatalyst for oxygen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, G., Wang, T., Zhao, B. et al. Ultrathin two-dimensional medium-entropy oxide as a highly efficient and stable electrocatalyst for oxygen evolution reaction. Nano Res. 17, 2555–2562 (2024). https://doi.org/10.1007/s12274-024-6421-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6421-z

Keywords

Navigation