Skip to main content
Log in

Tertiary orientation structures enhance the piezoelectricity of MXene/PVDF nanocomposite

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 08 February 2024

This article has been updated

Abstract

With the increasing demand for flexible piezoelectric sensor components, research on polyvinylidene fluoride (PVDF) based piezoelectric polymers is mounting up. However, the low dipole polarization and disordered polarization direction presented in PVDF hinder further improvement of piezoelectric properties. Here, we constructed an oriented tertiary structure, consisting of molecular chains, crystalline region, and MXene sheets, in MXene/PVDF nanocomposite via a temperature-pressure dual-field regulation method. The highly oriented PVDF molecular chains form approximately 90% of the β phase. In addition, the crystalline region structure with long-range orientation achieves out of plane polarization orientation. The parallel orientation arrangement of MXene effectively enhances the piezoelectric performances of the nanocomposite, and the current output of the device increases by nearly 23 times. This high output device is used to monitor exercise action, exploring the potential applications in wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Qian, X. S.; Chen, X.; Zhu, L.; Zhang, Q. M. Fluoropolymer ferroelectrics: Multifunctional platform fre polar-structured energy crnveesirn. Science 2023, 380, eadg0902.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

    Article  CAS  PubMed  Google Scholar 

  3. Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.

    Article  CAS  PubMed  Google Scholar 

  4. Ribeiro, C.; Costa, C. M.; Correia, D. M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Gonçalves, R.; Cardoso, V. F.; Lanceros-Méndez, S. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat. Protoc. 2018, 13, 681–704.

    Article  CAS  PubMed  Google Scholar 

  5. Ning, C. Y.; Zhou, Z. N.; Tan, G. X.; Zhu, Y.; Mao, C. B. Electroactive polymers for tissue regeneration: Developments and perspectives. Progr. Polym. Sci. 2018, 81, 144–162.

    Article  CAS  Google Scholar 

  6. Cui, N. Y.; Gu, L.; Liu, J. M.; Bai, S.; Qiu, J. W.; Fu, J. C.; Kou, X. L.; Liu, H.; Qin, Y.; Wang, Z. L. High performance sound driven triboelectric nanogenerator for harvesting noise energy. Nano Energy 2015, 15, 321–328.

    Article  CAS  Google Scholar 

  7. Yu, J. B.; Hou, X. J.; He, J.; Cui, M.; Wang, C.; Geng, W. P.; Mu, J. L.; Han, B.; Chou, X. J. Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring. Nano Energy 2020, 69, 104437.

    Article  CAS  Google Scholar 

  8. Su, Y. J.; Li, W. X.; Cheng, X. X.; Zhou, Y. H.; Yang, S.; Zhang, X.; Chen, C. X.; Yang, T. N.; Pan, H.; Xie, G. Z. et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peng, S. M.; Yang, X.; Yang, Y.; Wang, S. J.; Zhou, Y.; Hu, J.; Li, Q.; He, J. L. Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 2019, 31, 1807722.

    Article  Google Scholar 

  10. Huang, Y. F.; Rui, G. C.; Li, Q.; Allahyarov, E.; Li, R. P.; Fukuto, M.; Zhong, G. J.; Xu, J. Z.; Li, Z. M.; Taylor, P. L. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure betaβ crystals. Nat. Commun. 2021, 12, 675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hafner, J.; Benaglia, S.; Richheimer, F.; Teuschel, M.; Maier, F. J.; Werner, A.; Wood, S.; Platz, D.; Schneider, M.; Hradil, K. et al. Multi-scale characterisation of a ferroelectric polymer reveals the emergence of a morphological phase transition driven by temperature. Nat. Commun. 2021, 12, 152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progr. Polym. Sci. 2014, 39, 683–706.

    Article  CAS  Google Scholar 

  13. Qian, X. S.; Han, D. L.; Zheng, L. R.; Chen, J.; Tyagi, M.; Li, Q.; Du, F. H.; Zheng, S. Y.; Huang, X. Y.; Zhang, S. H. et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 2021, 600, 664–669.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Y.; Aziguli, H.; Zhang, B.; Xu, W. H.; Lu, W. C.; Bernholc, J.; Wang, Q. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 2018, 562, 96–100.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y.; Zhang, B.; Xu, W. H.; Haibibu, A.; Han, Z. B.; Lu, W. C.; Bernholc, J.; Wang, Q. Chirality- induced relaxor properties in ferroelectric polymers. Nat. Mater. 2020, 19, 1169–1174.

    Article  CAS  PubMed  Google Scholar 

  16. Shen, X.; Zheng, Q. B.; Kim, J. K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progr. Mater. Sci. 2021, 115, 100708.

    Article  CAS  Google Scholar 

  17. Shepelin, N. A.; Sherrell, P. C.; Skountzos, E. N.; Goudeli, E.; Zhang, J. Z.; Lussini, V. C.; Imtiaz, B.; Usman, K. A. S.; Dicinoski, G. W.; Shapter, J. G. et al. Interfacial piezoelectric polarization locking in printable Ti3C2T.j MXene-fluoropolymer composites. Nat. Commun. 2021, 12, 3171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan, X. T.; Yan, A.; Lai, Z. W.; Liu, Z. H.; Yu, Z. H.; Li, Z. M.; Cao, Y.; Dong, S. X. A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application. Nano Energy 2022, 98, 107340.

    Article  CAS  Google Scholar 

  19. Zhou, J.; Hou, D. J.; Cheng, S.; Zhang, J. S.; Chen, W.; Zhou, L.; Zhang, P. C. Recent advances in dispersion and alignment of fillers in PVDF-based composites for high-performance dielectric energy storage. Mater. Today Energy 2022, 31, 101208.

    Article  Google Scholar 

  20. Tian, G.; Deng, W. L.; Yang, T.; Xiong, D.; Zhang, H. R.; Lan, B. L.; Deng, L.; Zhang, B. B.; Jin, L.; Huang, H. C. et al. Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites. Small 2023, 19, 2207947.

    Article  CAS  Google Scholar 

  21. Tian, G.; Deng, W. L.; Xiong, D.; Yang, T.; Zhang, B. B.; Ren, X. R.; Lan, B. L.; Zhong, S.; Jin, L.; Zhang, H. R. et al. Dielectric microcapacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep. Phys. Sci. 2022, 3, 100814.

    Article  CAS  Google Scholar 

  22. Li, X. L.; Huang, Z. D.; Shuck, C. E.; Liang, G. J.; Gogotsi, Y.; Zhi, C. Y. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404.

    Article  PubMed  Google Scholar 

  23. Xiong, D.; Deng, W. L.; Tian, G.; Zhang, B. B.; Zhong, S.; Xie, Y. T.; Yang, T.; Zhao, H. B.; Yang, W. Q. Contalllbble in-sttu-oxidization of 3D-networked Ti3C2TX-TiO2 photodetectors for large-area flexible optical imaging. Nano Energy 2022, 93, 106889.

    Article  CAS  Google Scholar 

  24. Shekhirev, M.; Shuck, C. E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progr. Mater. Sci. 2021, 120, 100757.

    Article  CAS  Google Scholar 

  25. Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2T MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

    Article  CAS  Google Scholar 

  26. Wang, S. L.; Deng, W. L.; Yang, T.; Ao, Y.; Zhang, H. R.; Tian, G.; Deng, L.; Huang, H. C.; Huang, J. F.; Lan, B. L. et al. Bioinspired MXene - based piezoresistive sensor with two - stage enhancement for motion capture. Adv. Funct. Mater. 2023, 33, 2214503.

    Article  CAS  Google Scholar 

  27. Lan, B. L.; Xiao, X.; Carlo, A. D.; Deng, W. L.; Yang, T.; Jin, L.; Tian, G.; Ao, Y.; Yang, W. Q.; Chen, J. Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics. Adv. Funct. Mater. 2022, 32, 2207393.

    Article  CAS  Google Scholar 

  28. Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.

    Article  CAS  Google Scholar 

  29. Su, Y. J.; Chen, C. X.; Pan, H.; Yang, Y.; Chen, G. R.; Zhao, X.; Li, W. X.; Gong, Q. C.; Xie, G. Z.; Zhou, Y. H. et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 2021, 31, 2010962.

    Article  CAS  Google Scholar 

  30. Liu, Y. L.; Tong, W. S.; Wang, L. C.; Zhang, P. P.; Zhang, J. H.; Wang, X. M.; Zhang, S.; Liu, Y.; Liu, S. L.; Wang, S. Q. et al. Phase separation of a PVDF-HFP film on an ice substrate to achieve self-polarisation alignment. Nano Energy 2023, 106, 108082.

    Article  CAS  Google Scholar 

  31. Liu, Z. K.; Li, X. Y.; Zhang, Q. M. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Appl. Phys. Lett. 2012, 101, 082904.

    Article  Google Scholar 

  32. Tian, G.; Deng, W. L.; Gao, Y. Y.; Xiong, D.; Yan, C.; He, X. B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H. T. et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581.

    Article  CAS  Google Scholar 

  33. Li, Y.; Tang, S. D.; Pan, M. W.; Zhu, L.; Zhong, G. J.; Li, Z. M. Polymorphic extended-chain and folded-chain crystals in poly(vinylidene fluoride) achieved by combination of high pressure and Ion-dipole interaction. Macromolecule- 2015, 48, 8565–8573.

    Article  CAS  Google Scholar 

  34. He, S.; Guo, M. F.; Wang, Y.; Liang, Y. H.; Shen, Y. An optical/ferroelectric multiplexing multidimensional nonvolatile memory from ferroelectric polymer. Adv. Mater. 2022, 34, 2202181.

    Article  CAS  Google Scholar 

  35. Liu, Y.; Zhou, Y.; Qin, H. C.; Yang, T. N.; Chen, X.; Li, L.; Han, Z. B.; Wang, K.; Zhang, B.; Lu, W. C. et al. Electro- thermal actuation in percolative ferroelectric polymer nanocomposites. Nat. Mater. 2023, 22, 873–879.

    Article  CAS  PubMed  Google Scholar 

  36. Meng, N.; Ren, X. T.; Santagiuliana, G.; Ventura, L.; Zhang, H.; Wu, J. Y.; Yan, H. X.; Reece, M. J.; Bilotti, E. Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun. 2019, 10, 4535.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ren, J. Y.; Ouyang, Q. F.; Ma, G. Q.; Li, Y.; Lei, J.; Huang, H. D.; Jia, L. C.; Lin, H.; Zhong, G. J.; Li, Z. M. Enhanced dielectric and ferroelectric properties of poly(vinylidene fluoride) through annealing oriented crystallites under high pressure. Macromolecules 2022, 55, 2014–2027.

    Article  CAS  Google Scholar 

  38. Zhang, D. P.; Tian, P. F.; Chen, X.; Lu, J.; Huang, R. Pressure-crystallized piezoelectric structures in binary fullerene C70/poly(vinylidene fluoride) based composites. J. Appl. Polymer Sci. 2013, 130, 1823–1833.

    Article  CAS  Google Scholar 

  39. Jin, L.; Ma, S. Y.; Deng, W. L.; Yan, C.; Yang, T.; Chu, X.; Tian, G.; Xiong, D.; Lu, J.; Yang, W. Q. Polarization- free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy 2018, 50, 632–638.

    Article  CAS  Google Scholar 

  40. Huang, X. Y.; Sun, B.; Zhu, Y. K.; Li, S. T.; Jiang, P. K. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progr. Mater. Sci. 2019, 100, 187–225.

    Article  CAS  Google Scholar 

  41. Zhang, J. L.; Yang, T.; Tian, G.; Lan, B. L.; Deng, W. L.; Tang, L. H.; Ao, Y.; Sun, Y.; Zeng, W. H.; Ren, X. R. et al. Spatially confined MXene/PVDF nanofiber piezoelectric electronics. Adv. Fiber Mater., in press, DOI: https://doi.org/10.1007/s42765-023-00337-w.

  42. Yang, T.; Pan, H.; Tian, G.; Zhang, B. B.; Xiong, D.; Gao, Y. Y.; Yan, C.; Chu, X.; Chen, N. J.; Zhong, S. et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 2020, 72, 104706.

    Article  Google Scholar 

  43. Yun, J.; Park, J.; Ryoo, M.; Kitchamsetti, N.; Goh, T. S.; Kim, D. Piezo-triboelectric hybridized nanogenerator embedding MXene based bifunctional conductive filler in polymer matrix for boosting electrical power. Nano Energy 2023, 105, 108018.

    Article  CAS  Google Scholar 

  44. Yu, J. B.; Xian, S.; Zhang, Z. P.; Hou, X. J.; He, J.; Mu, J. L.; Geng, W. P.; Qiao, X. J.; Zhang, L.; Chou, X. J. Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications. Nano Res. 2023, 16, 5490–5502.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52303328), the Postdoctoral Innovation Talents Support Program (No. BX20220257), the Multiple Clean Energy Harvesting System (No. YYF20223026), the Sichuan Science and Technology Program (No. 2023NSFSC0313), and a Catalyst Seeding General Grant administered by the Royal Society of New Zealand (Contract 20-UOA-035-CSG). We are grateful for the help from the Analysis and Testing Center of Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Jin or Weiqing Yang.

Electronic Supplementary Material

Tertiary orientation structures enhance the piezoelectricity of MXene/PVDF nanocomposite

Supplementary material, approximately 23.5 MB.

Supplementary material, approximately 29.7 MB.

Supplementary material, approximately 45.6 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, Y., Yang, T., Tian, G. et al. Tertiary orientation structures enhance the piezoelectricity of MXene/PVDF nanocomposite. Nano Res. 17, 5629–5635 (2024). https://doi.org/10.1007/s12274-023-6418-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6418-7

Keywords

Navigation