Skip to main content
Log in

Accelerated reconstruction of ZIF-67 with significantly enhanced glucose detection sensitivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Research on metal-organic framework (MOF)-based non-enzymatic glucose sensors usually ignores the impact of the surface reconstruction degree of MOF on the activity of catalyzing glucose oxidation. In this work, we choose zeolitic imidazolate framework-67 (ZIF-67), which is commonly used in glucose sensing, as a representative to investigate the influence of reconstruction degree on its structure and glucose catalytic performance. By employing the electrochemical activation strategy, the activity of ZIF-67 in catalyzing glucose gradually increased with the prolongation of the activation time, reaching the optimum after 2 h activation. The detection sensitivity of the activated ZIF-67 was 19 times higher than that of the initial ZIF-67, and the limit of detection (LOD) was lowered from 7 to 0.4 µM. Our findings demonstrate that the oxidation degree of ZIF-67 deepened rapidly with continuously activation and was basically reconstructed to CoOOH after 2 h activation, accompanied by a morphological change from cuboctahedral to flower-like. Simultaneously, theoretical investigation revealed that ZIF-67 is not suitable as a stable glucose sensor electrode since the adsorbed glucose molecules hasten the dissociation of ligands and the breaking of Co–N bond in ZIF-67. Therefore, our work has important implications for the rational design of next-generation MOF-based glucose sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, Y.; Chen, J. Y.; Guo, Y. H.; Lv, T.; Chen, Z. L.; Li, N.; Cao, S. K.; Chen, B. D.; Chen, T. Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive blood glucose sensors. Biosens. Bioelectron. 2021, 179, 113078.

    Article  CAS  PubMed  Google Scholar 

  2. Zuo, M.; Jia, W. L.; Feng, Y. C.; Zeng, X. H.; Tang, X.; Sun, Y.; Lin, L. Effective selectivity conversion of glucose to furan chemicals in the aqueous deep eutectic solvent. Renew. Energy 2021, 164, 23–33.

    Article  CAS  Google Scholar 

  3. Feng, F.; Ou, Z. P.; Zhang, F. D.; Chen, J. X.; Huang, J. K.; Wang, J. X.; Zuo, H. Q.; Zeng, J. B. Artificial intelligence-assisted colorimetry for urine glucose detection towards enhanced sensitivity, accuracy, resolution, and anti-illuminating capability. Nano Res. 2023, 16, 12084–12091.

    Article  CAS  Google Scholar 

  4. Du, P. Y.; Niu, Q. X.; Chen, J.; Chen, Y.; Zhao, J.; Lu, X. Q. “Switch-On” fluorescence detection of glucose with high specificity and sensitivity based on silver nanoparticles supported on porphyrin metal-organic frameworks. Anal. Chem. 2020, 92, 7980–7986

    Article  CAS  PubMed  Google Scholar 

  5. Ramanaviciene, A.; Nastajute, G.; Snitka, V.; Kausaite, A.; German, N.; Barauskas-Memenas, D.; Ramanavicius, A. Spectrophotometric evaluation of gold nanoparticles as red-ox mediator for glucose oxidase. Sens. Actuat. B: Chem. 2009, 137, 483–489.

    Article  CAS  Google Scholar 

  6. Chen, J. Q.; Liu, X. Y.; Zheng, G. C.; Feng, W.; Wang, P.; Gao, J.; Liu, J. B.; Wang, M. Z.; Wang, Q. Y. Detection of glucose based on noble metal nanozymes: Mechanism, activity regulation, and enantioselective recognition. Small 2023, 19, 2205924.

    Article  CAS  Google Scholar 

  7. Ahmadianyazdi, A.; Nguyen, N. H. L.; Xu, J.; Berry, V. Glucose measurement via Raman spectroscopy of graphene: Principles and operation. Nano Res. 2022, 15, 8697–8704.

    Article  CAS  Google Scholar 

  8. Li, H. Y.; Qi, H. J.; Chang, J. F.; Gai, P. P.; Li, F. Recent progress in homogeneous electrochemical sensors and their designs and applications. TrAC Trends Anal. Chem. 2022, 156, 116712.

    Article  CAS  Google Scholar 

  9. Umapathi, R.; Raju, C. V.; Ghoreishian, S. M.; Rani, G. M.; Kumar, K.; Oh, M. H.; Park, J. P.; Huh, Y. S. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev. 2022, 470, 214708.

    Article  CAS  Google Scholar 

  10. Paul, R.; Zhai, Q. F.; Roy, A. K.; Dai, L. M. Charge transfer of carbon nanomaterials for efficient metal-free electrocatalysis. Interdiscip. Mater. 2022, 1, 28–50.

    Article  CAS  Google Scholar 

  11. Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

    Article  Google Scholar 

  12. Jiang, J.; Liu, J. P. Iron anode-based aqueous electrochemical energy storage devices: Recent advances and future perspectives. Interdiscip. Mater. 2022, 1, 116–139.

    Article  Google Scholar 

  13. Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X.; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem. 2019, 131, 4315–4319.

    Article  Google Scholar 

  14. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    Article  CAS  Google Scholar 

  15. Adeel, M.; Asif, K.; Rahman, M. M.; Daniele, S.; Canzonieri, V.; Rizzolio, F. Glucose detection devices and methods based on metal-organic frameworks and related materials. Adv. Funct. Mater. 2021, 31, 2106023.

    Article  CAS  Google Scholar 

  16. Liu, C. S.; Li, J. J.; Pang, H. Mtta—organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord. Chem. Rev. 2020, 410, 213222.

    Article  CAS  Google Scholar 

  17. Fang, C.; Deng, Z.; Cao, G. D.; Chu, Q.; Wu, Y. L.; Li, X.; Peng, X. S.; Han, G. R. Co-ferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy. Adv. Funct. Mater. 2020, 30, 1910085.

    Article  CAS  Google Scholar 

  18. Chen, Z. Y.; Song, S.; Zeng, H. J.; Ge, Z. L.; Liu, B.; Fan, Z. J. 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 2023, 471, 144649.

    Article  CAS  Google Scholar 

  19. Zhong, N. Y.; Gao, R.; Shen, Y. J.; Kou, X. X.; Wu, J. Y.; Huang, S. M.; Chen, G. S.; Ouyang, G. F. Enzymes-encapsulated defective metal-organic framework hydrogel coupling with a smartphone for a portable glucose biosensor. Anal. Chem. 2022, 94, 14385–14393.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Q. P.; Chen, M.; Xiong, C.; Zhu, X. F.; Chen, C.; Zhou, F. Y.; Dong, Y.; Wang, Y.; Xu, J.; Li, Y. M. et al. Dual confinement of high-loading enzymes within metal-organic frameworks for glucose sensor with enhanced cascade biocatalysis. Biosens. Bioelectron. 2022, 196, 113695.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Q.; Li, P. P.; Wu, J.; Peng, Y.; Pang, H. Pyridine-regulated lamellar nickel-based metal-organic framework (Ni-MOF) for nonenzymatic electrochemical glucose sensor. Adv. Sci. 2023, 10, 2304102.

    Article  CAS  Google Scholar 

  22. Li, Y.; Xie, M. W.; Zhang, X. P.; Liu, Q.; Lin, D. M.; Xu, C. G.; Xie, F. Y.; Sun, X. P. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuat. B: Chem. 2019, 278, 126–132.

    Article  CAS  Google Scholar 

  23. Lu, M. X.; Deng, Y. J.; Li, Y. C.; Li, T. B.; Xu, J.; Chen, S. W.; Wang, J. Y. Cree-shell MOF@MOF composites for sensitive nonenzymatic glucose sensing in human serum. Anal. Chim. Acta 2020, 1110, 35–43.

    Article  CAS  PubMed  Google Scholar 

  24. Xia, Y. Y.; Su, T.; Mi, Z. Y.; Feng, Z. Y.; Hong, Y. W.; Hu, X. Y.; Shu, Y. Wearable electrochemical sensor based on bimetallic MOF coated CNT/PDMS film electrode via a dual-stamping method for real-time sweat glucose analysis. Anal. Chim. Acta 2023, 1278, 341754.

    Article  CAS  PubMed  Google Scholar 

  25. Tong, P. H.; Wang, J. J.; Hu, X. L.; James, T. D.; He, X. P. Metal-organic framework (MOF) hybridized gold nanoparticles as a bifunctional nanozyme for glucose sensing. Chem. Sci. 2023, 14, 7762–7769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, T.; Zhang, Y. X.; Liu, M. S.; Wang, H. T.; Ren, J.; Tian, Y. J.; Liu, X.; Zhou, Y. F.; Wang, J. L.; Zhu, W. X. et al. In-situ two-step electrodeposition of α-CD-rGO/Ni-MOF composite film for superior glucose sensing. J. Alloys Compd. 2022, 923, 166418

    Article  CAS  Google Scholar 

  27. Hassanzadeh, J.; Al Lawati, H. A. J.; Bagheri, N. On paper synthesis of multifunctional CeO2 nanoparticles@Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose. Biosens. Bioelectron. 2022, 207, 114184.

    Article  CAS  PubMed  Google Scholar 

  28. Luo, Y. T.; Shupletsov, L.; Vega, M. R. O.; Gutiérrez-Serpa, A.; Khan, A. H.; Brunner, E.; Senkovska, I.; Kaskel, S. Integration of triphenylene-based conductive metal-organic frameworks into carbon nanotube electrodes for boosting nonenzymatic glucose sensing. ACS Appl. Mater. Interfaces 2023, 15, 51435–51443.

    Article  CAS  Google Scholar 

  29. Li, J.; Zhao, J.; Li, S. Q.; Chen, Y.; Lv, W. Q.; Zhang, J. H.; Zhang, L. B.; Zhang, Z.; Lu, X. Q. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021, 14, 4689–4695.

    Article  CAS  Google Scholar 

  30. Chen, X.; Feng, X. Z.; Zhan, T.; Xue, Y. T.; Li, H. X.; Han, G. C.; Chen, Z. C.; Kraatz, H. B. Construction of a portable enzyme-free electrochemical glucose detection system based on the synergistic interaction of Cu-MOF and PtNPs. Sens. Actuat. B: Chem. 2023, 395, 134498.

    Article  CAS  Google Scholar 

  31. Akter, R.; Saha, P.; Shah, S. S.; Shaikh, M. N.; Aziz, M. A.; Ahammad, A. J. S. Nanostructured nickel-based non-enzymatic electrochemical glucose sensors. Chem. Asian J. 2022, 17, e202200897.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, Z. L.; Wang, P. H.; Hou, S. P. Enhanced electrochemical glucose sensing of Co/Cu-MOF by hydroxyl adsorption induced reactive oxygen species. Anal. Methods 2023, 15, 2766–2772.

    Article  CAS  PubMed  Google Scholar 

  33. Li, J. Q.; Cai, X. D.; Jiang, P.; Wang, H. Y.; Zhang, S. W.; Sun, T. D.; Chen, C. X.; Fan, K. L. Co-based nanozymatic profiling: Advances spanning chemistry, biomedical, and environmental sciences. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202307337.

  34. Kim, K.; Kim, J.; Bae, Y. S. Zn-Co bimetallic zeolitic imidazolate frameworks as nonenzymatic electrochemical glucose sensors with enhanced sensitivity and chemical stability. ACS Sustain. Chem. Eng. 2022, 10, 11702–11709.

    Article  CAS  Google Scholar 

  35. Chen, X. R.; Liu, D.; Cao, G. J.; Tang, Y.; Wu, C. In situ synthesis of a sandwich-like graphenesZIF-67 heterostructure for highly sensitive nonenzymatic glucose sensing in human serums. ACS Appl. Mater. Interfaces 2019, 11, 9374–9384.

    Article  CAS  PubMed  Google Scholar 

  36. Qin, W. L.; Li, X. L.; Zhang, Y. C.; Han, L.; Cheng, Z. J.; Li, Z. J.; Xu, Y. Rational design of Ag nanoparticles on ZIF-67-functionalized carbon nanotube for enzymeless glucose detection and electrocatalytic water oxidation. J. Alloys Compd. 2022, 910, 164878.

    Article  CAS  Google Scholar 

  37. Balasubramanian, P.; He, S. B.; Deng, H. H.; Peng, H. P.; Chen, W. Defects engineered 2D ultrathin cobalt hydroxide nanosheets as highly efficient electrocatalyst for non-enzymatic electrochemical sensing of glucose and l-cysteine. Sens. Actuat. B: Chem. 2020, 320, 128374.

    Article  CAS  Google Scholar 

  38. Wang, S.; Xu, W. H.; Zeng, D. F.; Zhang, R. R.; Shu, T. Amorphous copper cobalt carbonate hydroxide prepared by SILAR on copper foam for non-enzymatic glucose sensing. J. Mater. Sci. 2023, 57, 199–210.

    Article  Google Scholar 

  39. Zheng, W. R.; Liu, M. J.; Lee, L. Y. S. Electrochemical instability of metal-organic frameworks: In situ spectroelectrochemical investigation of the real active sites. ACS Catal. 2020, 10, 81–92.

    Article  CAS  Google Scholar 

  40. Salauddin, M.; Rana, S. S.; Sharifuzzaman, M.; Lee, S. H.; Zahed, M. A.; Do Shin, Y.; Seonu, S.; Song, H. S.; Bhatta, T.; Park, J. Y. Laser-carbonized MXene/ZIF-67 nanocomposite as an intermediate layer for boosting the output performance of fabric-based triboelectric nanogenerator. Nano Energy 2022, 100, 107462.

    Article  CAS  Google Scholar 

  41. Li, M.; Wang, X.; Liu, K.; Zhu, Z. Y.; Guo, H. Y.; Li, M. Z.; Du, H.; Sun, D. M.; Li, H.; Huang, K. et al. Ce- induced differentiated regulation of Co sites via gradient orbital coupling for bifunctional water-splitting Reactions. Adv. Energy Mater. 2023, 13, 2301162.

    Article  CAS  Google Scholar 

  42. Luan, C. L.; Corva, M.; Hagemann, U.; Wang, H. C.; Heidelmann, M.; Tschulik, K.; Li, T. Atomic-scale insights into morphological, structural, and compositional evolution of CoOOH during oxygen evolution reaction. ACS Catal. 2023, 13, 1400–1411.

    Article  CAS  Google Scholar 

  43. Chen, S. M.; Ma, L. T.; Huang, Z. D.; Liang, G. J.; Zhi, C. Y. In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts. Cell Rep. Phys. Sci. 2022, 3, 100729.

    Article  CAS  Google Scholar 

  44. Liu, Z. J.; Kong, Z. J.; Cui, S. S.; Liu, L. Y.; Wang, F.; Wang, Y. Y.; Wang, S. Y.; Zang, S. Q. Electrocatalytic mechanism of defect in spinels for water and organics oxidation. Small 2023, 19, 2302216.

    Article  CAS  Google Scholar 

  45. Zhu, Y. Q.; Zhou, H.; Dong, J. C.; Xu, S. M.; Xu, M.; Zheng, L. R.; Xu, Q.; Ma, L. N.; Li, Z. H.; Shao, M. F. et al. Identification of active sites formed on cobalt oxyhydroxide in glucose electrooxidation. Angew. Chem. 2023, 135, e202219048.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially sponsored by the National Natural Science Foundation of China (Nos. 22102128 and 22279097) and the Fundamental Research Funds for the Central Universities (No. WUT:2022IVA168).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengying Li or Daping He.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Zeng, W., Qian, W. et al. Accelerated reconstruction of ZIF-67 with significantly enhanced glucose detection sensitivity. Nano Res. 17, 4737–4743 (2024). https://doi.org/10.1007/s12274-023-6409-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6409-0

Keywords

Navigation