Skip to main content
Log in

Salt-assisted vapor–liquid–solid growth of high-quality ultrathin nickel oxide flakes for artificial synapses in image recognition applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transition metal oxides have attracted intense interest owing to their abundant physical and chemical properties. The controlled preparation of large-area, high-quality two-dimensional crystals is essential for revealing their inherent properties and realizing high-performance devices. However, fabricating two-dimensional (2D) transition metal oxides using a general approach still presents substantial challenges. Herein, we successfully achieve highly crystalline nickel oxide (NiO) flakes with a thickness as thin as 3.3 nm through the salt-assisted vapor-liquid-solid (VLS) growth method, which demonstrated exceptional stability under ambient conditions. To explore the great potential of the NiO crystal in this work, an artificial synapse based on the NiO-flake resistive switching (RS) layer is investigated. Short-term and long-term synaptic behaviors are obtained with external stimuli. The artificial synaptic performance provides the foundation of the neuromorphic application, including handwriting number recognition based on artificial neuron network (ANN) and the virtually unsupervised learning capability based on generative adversarial network (GAN). This pioneering work not only paves new paths for the synthesis of 2D oxides in the future but also demonstrates the substantial potential of oxides in the field of neuromorphic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng, X. Q.; Cheng, R. Q.; Yin, L.; Wen, Y.; Jiang, J.; He, J. Two-dimensional oxide crystals for device applications: Challenges and opportunities. Adv. Mater., in press, https://doi.org/10.1002/adma.202304708.

  2. Han, W.; Huang, P.; Li, L.; Wang, F. K.; Luo, P.; Liu, K. L.; Zhou, X.; Li, H. Q.; Zhang, X. W.; Cui, Y. et al. TwOddimnnsional inorganic molecular crystals. Nat. Commun. 2019, 10, 4728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, Y. Z.; Wang, P.; Wang, H.; Xu, B. Q.; Li, H.; Cheng, M.; Feng, W.; Du, R. F.; Song, L. Y.; Wen, X. et al. Room-temperature magnetoelectric coupling in atomically thin e-Fe2O3. Adv. Mater. 2022, 35, 2209465.

    Article  Google Scholar 

  4. Zhang, H. M.; Wu, Y. W.; Huang, Z. W.; Shen, X. H.; Li, B. L.; Zhang, Z. C.; Wu, R. X.; Wang, D.; Yi, C.; He, K. et al. Synthesis of two-dimensional MoO2 nanoplates with large linear magnetoresistance and nonlinear hall effect. Nano Lett. 2023, 23, 2179–2186.

    Article  CAS  PubMed  Google Scholar 

  5. Feng, X. Q.; Zhai, B. X.; Cheng, R. Q.; Yin, L.; Wen, Y.; Jiang, J.; Wang, H.; Li, Z. W.; Zhu, Y. S.; He, J. Phase engineering of 2D spinel-type manganese oxides. Adv. Mater. 2023, 35, e2304118.

    Article  PubMed  Google Scholar 

  6. Zhang, Y.; Cao, F.; Li, S. Y.; Liu, X. Y.; Kang, L. X.; Wu, L. M.; Fang, X. S. Integration of filter membrane and Ca2Nb3O10 nanosheets for high performance flexible UV photodetectors. J. Mater. Sci. Technol. 2022, 129, 108–114.

    Article  CAS  Google Scholar 

  7. Zhang, Y.; Yao, J.; Zhang, Z.; Zhang, R.; Li, L.; Teng, Y.; Shen, Z. J.; Kang, L. X.; Wu, L. M.; Fang, X. S. Two-dimensional perovskite Pb2Nb3O10 rjootoetecttors. J. Mater. Sci. Technol. 2022, 164, 95–101.

    Article  Google Scholar 

  8. Ran, Y. F.; Pei, Y. F.; Zhou, Z. Y.; Wang, H.; Sun, Y.; Wang, Z. R.; Hao, M. M.; Zhao, J. H.; Chen, J. S.; Yan, X. B. A review of Mott insulator in memristors: The materials, characteristics, applications for future computing systems and neuromorphic computing. Nano Res. 2023, 16, 1165–1182.

    Article  CAS  Google Scholar 

  9. Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

    Article  CAS  PubMed  Google Scholar 

  10. Lin, Y.; Meng, F. Q.; Zeng, T.; Zhang, Q. H.; Wang, Z. Q.; Cheng, Y. K.; Zhao, X. N.; Gu, L.; Xu, H. Y.; Liu, Y. C. Direct observation of oxygen ion dynamics in a WO3-J based second-order memristor with dendritic integration functions. Adv. Funct. Mater. 2023, 35, 2302787.

    Article  Google Scholar 

  11. Li, Y.; Zhang, Z. C.; Li, J. Q.; Chen, X.-D.; Kong, Y.; Wang, F.-D.; Zhang, G.-X.; Lu, T.-B.; Zhang, J. Low-voltage ultrafast nonvolatile memory via direct charge injection through a threshold resistive-switching layer. Nat. Commun. 2022, 13, 4591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, Z.; Mondal, S.; Mandal, S.; Allred, J. M.; Aghamiri, N. A.; Fali, A.; Zhang, Z.; Zhou, H.; Cao, H.; Rodolakis, F. et al. Neuromorphic learning with Mott insulator NiO. Proc. Natl. Acad. Sci. USA 2021, 118, e2017239118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, Z. Y.; Du, C.; Yan, B.; Wang, C. X.; Yang, G. W. Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nat. Commun. 2018, 9, 4036.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhu, Y. Q.; Guo, H. Z.; Wu, Y.; Cao, C. B.; Tao, S.; Wu, Z. Y. Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets. J. Mater. Chem. A 2014, 2, 7904–7911.

    Article  CAS  Google Scholar 

  15. Napari, M.; Huq, T. N.; Hoye, R. L. Z.; MacManus-Driscoll, J. L. Nickel oxide thin films grown by chemical deposition techniques: Potential and challenges in next-generation rigid and flexible device applications. InfoMat 2021, 3, 536–576.

    Article  CAS  Google Scholar 

  16. Zhang, P.; Wang, X. G.; Jiang, H. N.; Zhang, Y. W.; He, Q. Q.; Si, K. P.; Li, B. X.; Zhao, F. F.; Cui, A. Y.; Wei, Y. et al. Flux-assisted growth of atomically thin materials. Nat. Synth. 2022, 1, 864–872.

    Article  Google Scholar 

  17. Zhao, Z. J.; Fang, Z.; Han, X. C.; Yang, S. Q.; Zhou, C.; Zeng, Y.; Zhang, B.; Li, W.; Wang, Z.; Zhang, Y. et al. A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials. Nat. Commun. 2023, 14, 958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rooksby, H. P. Structure of nickel oxide. Natree 1943, 152, 304–304.

    Article  CAS  Google Scholar 

  19. Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L.-J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134–6150.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, J. T.; Li, W.; Huang, R.; Ma, L.; Sun, H. M.; Choi, J. H.; Zhang, L. Q.; Cui, Y.; Zou, G. F. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J. Am. Chem. Soc. 2020, 142, 16276–16284.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, J. T.; Xu, H.; Zou, G. F.; Zhang, W.; Chai, R. Q.; Choi, J.; Wu, J.; Liu, H. Y.; Shen, G. Z.; Fan, H. Y. MoS2-OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 2019, 141, 5392–5401.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, J.; Feng, W. Y.; Wen, Y.; Yin, L.; Wang, H.; Feng, X. Q.; Pei, Y. L.; Cheng, R. Q.; He, J. Tuning 2D magnetism in cobalt monoxide nanosheets via in situ nickel-doping. Adv. Mater. 2023, 35, 2301668.

    Article  CAS  Google Scholar 

  23. Hussain, S.; Zhou, R.; Li, Y.; Qian, Z. Y.; Urooj, Z.; Younas, M.; Zhao, Z. Y.; Zhang, Q. H.; Dong, W. L.; Wu, Y. Y. et al. Liquid phase edge epitaxy of transition-metal dichalcogenide monolayers. J. Am. Chem. Soc. 2023, 145, 11348–11355.

    Article  CAS  PubMed  Google Scholar 

  24. Li, S. S.; Lin, Y.-C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z. H.; Shen, Y. D.; Tang, D.-M.; Wang, J. Y.; Zhang, Q. et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535–542.

    Article  CAS  PubMed  Google Scholar 

  25. Xie, J. N.; Meng, G. D.; Chen, B. Y.; Li, Z.; Yin, Z. Y.; Cheng, Y. H. Vapor-liquid-solid growth of morphology-tailorable WS2 toward P-type monolayer field-effect transistors. ACS Appl. Mater. Interfaces 2022, 14, 45716–45724.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, C. S.; Zhang, H. T.; Si, W. J.; Wu, H. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nat. Commun. 2016, 7, 12543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Visser, D.; Verschoor, G. C.; IJdo, D. J. W. The structure of KNiCl3 at room temperature. Acta Cryst. B 1980, 36, 28–34.

    Article  CAS  Google Scholar 

  28. Wang, J.; Ma, L.; Wang, X. Y.; Wang, X. H.; Yao, J. J.; Yi, Q. H.; Tang, R. J.; Zou, G. F. Sub- nanometer thick wafer-size NiO films with room-temperature ferromagnetic behavior. Angew. Chem., Int. Ed. 2021, 60, 25020–25027.

    Article  CAS  Google Scholar 

  29. Bagus, P. S.; Nelin, C. J.; Brundle, C. R.; Crist, B. V.; Ilton, E. S.; Lahiri, N.; Rosso, K. M. Main and satellite features in the Ni 2p XPS of NiO. Inorg. Chem. 2022, 61, 18077–18094.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y. W.; Zhang, P.; Xu, T. F.; Wang, X. G.; Jiang, H. N.; Gong, Y. J. H2S-assisted growth of 2D MS2 (M = Ti, Zr, Nb). Chin. Chem. Lett. 2022, 33, 1390–1394.

    Article  CAS  Google Scholar 

  31. Wang, P.; Ge, J.; Luo, J. W.; Wang, H.; Song, L. Y.; Li, Z. W.; Yang, J. B.; Wang, Y. Z.; Du, R. F.; Feng, W. et al. Interisland-distance-mediated growth of centimeter-scale two-dimensional magnetic Fe3O4 arrays with unidirectional domain orientations. Nano Lett. 2023, 23, 1758–1766.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta, S. K.; Mao, Y. B. A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Prog. Mater. Sci. 2021, 117, 100734.

    Article  CAS  Google Scholar 

  34. Huang, L. L.; Thi, Q. H.; Zheng, F. Y.; Chen, X.; Chu, Y. W.; Lee, C.-S.; Zhao, J.; Ly, T. H. Catalyzed kinetic growth in two-dimensional MoS2. J. Am. Chem. Soc. 2020, 142, 13130–13135.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L.-J.; Zhai, T. Y.; Wee, A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

    Article  CAS  PubMed  Google Scholar 

  36. Huang, J. H.; Yang, S. D.; Tang, X.; Yang, L. L.; Chen, W. J.; Chen, Z. B.; Li, X. M.; Zeng, Z. P.; Tang, Z. K.; Gui, X. C. Flexible, transparent, and wafer-scale artificial synapse array based on TiOI/Ti3C2TI film for neuromorphic computing. Adv. Mater. 2023, 35, 2303737.

    Article  CAS  Google Scholar 

  37. Zhang, J. Y.; Guo, P.; Guo, Z. Y.; Li, L.; Sun, T. R.; Liu, D. P.; Tian, L.; Zu, G. Q.; Xiong, L. Z.; Zhang, J. H. et al. Retina-inspired artificial synapses with ultraviolet to near-infrared broadband responses for energy-efficient neuromorphic visual systems. Adv. Funct. Mater. 2023, 33, 2302885.

    Article  CAS  Google Scholar 

  38. Peng, Z. H.; Cheng, Z. Q.; Ke, S. W.; Xiao, Y. Y.; Ye, Z. E.; Wang, Z. K.; Shi, T. Y.; Ye, C.; Wen, X.; Chu, P. K. et al. Flexible memristor constructed by 2D cadmium phosphorus trichalcogenide for artificial synapse and logic operation. Adv. Funct. Mater. 2023, 33, 2211269.

    Article  CAS  Google Scholar 

  39. Bu, Y. L.; Xu, T.; Geng, S. Y. Y.; Fan, S. Q.; Li, Q.; Su, J. Ferroelectrics-electret synergetic organic artificial synapses with single-polarity driven dynamic reconfigurable modulation. Adv. Funct. Mater. 2023, 33, 2213741.

    Article  CAS  Google Scholar 

  40. Chen, L.; Li, R. L.; Yuan, S. L.; Chen, A. P.; Li, Y.; Zhang, T.; Wei, L.; Zhang, Q. C.; Li, Q. W. Fiber- shaped artificial optoelectronic synapses for wearable visual-memory systems. Matter 2023, 6, 925–939.

    Article  CAS  Google Scholar 

  41. Li, J. Y.; Shen, Z. J.; Cao, Y. X.; Tu, X.; Zhao, C.; Liu, Y. N.; Wen, Z. Artificial synapses enabled neuromorphic computing: From blueprints to reality. Nano Energy 2022, 103, 107744.

    Article  CAS  Google Scholar 

  42. Zhang, Y. C.; Liu, L.; Tu, B.; Cui, B.; Guo, J. H.; Zhao, X.; Wang, J. Y.; Yan, Y. An artificial synapse based on molecular junctions. Nat. Commun. 2023, 14, 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dong, Z. L.; Hua, Q. L.; Xi, J. G.; Shi, Y. H.; Huang, T. C.; Dai, X. H.; Niu, J. N.; Wang, B. J.; Wang, Z. L.; Hu, W. G. Ultrafast and low-power 2D Bi2O2Se memristors for neuromorphic computing applications. Nano Lett. 2023, 23, 3842–3850.

    Article  CAS  PubMed  Google Scholar 

  44. Shen, Z. J.; Zhao, C.; Kang, L. X.; Sun, Y.; Liu, Y. N.; Mitrovic, I. Z.; Yang, L.; Lim, E. G.; Zeng, Z. M.; Zhao, C. Z. Emerging optical in-memory computing sensor synapses based on low-dimensional nanomaterials for neuromorphic networks. Adv. Intell. Syst. 2022, 4, 2100236.

    Article  Google Scholar 

  45. Wang, X. M.; Yang, H. H.; Li, E. L.; Cao, C. B.; Zheng, W.; Chen, H. P.; Li, W. W. Stretchable transistor-structured artificial synapses for neuromorphic electronics. Small 2023, 19, 2205395.

    Article  CAS  Google Scholar 

  46. Wang, W. X.; Gao, S.; Li, Y.; Yue, W. J.; Kan, H.; Zhang, C. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Artificial optoelectronic synapses based on TiNcO2−x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 2021, 31, 2101201.

    Article  CAS  Google Scholar 

  47. Won, U. Y.; An Vu, Q.; Park, S. B.; Park, M. H.; Dam Do, V.; Park, H. J.; Yang, H.; Lee, Y. H.; Yu, W. J. Multi-neuron connection using multi-terminal floating-gate memristor for unsupervised learning. Nat. Commun. 2023, 14, 3070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lei, P. X.; Duan, H.; Qin, L.; Wei, X. H.; Tao, R.; Wang, Z. G.; Guo, F.; Song, M. L.; Jie, W. J.; Hao, J. H. High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses. Adv. Funct. Mater. 2022, 32, 2201276.

    Article  CAS  Google Scholar 

  49. Yang, S. T.; Li, X. Y.; Yu, T. L.; Wang, J.; Fang, H.; Nie, F.; He, B.; Zhao, L.; Lü, W. M.; Yan, S. S. et al. Fgh-perfornainnee neuromorphic computing based on ferroelectric synapses with excellent conductance linearity and symmetry. Adv. Funct. Mater. 2022, 32, 2202366.

    Article  CAS  Google Scholar 

  50. Lan, L.; Teng, X.; Zhang, J.; Zhang, X.; Tao, D. C. Learning to purification for unsupervised person re-identification. IEEE Trans. Image Process. 2023, 32, 3338–3353.

    Article  PubMed  Google Scholar 

  51. Xu, J. J.; Zhang, Z. X.; Hu, X. L. Extracting semantic knowledge from GANs with unsupervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9654–9668.

    Article  PubMed  Google Scholar 

  52. Huo, Y. C.; Bao, H. J.; Peng, Y. F.; Gao, C.; Hua, W.; Yang, Q.; Li, H. F.; Wang, R.; Yoon, S. E. Optical neural network via loose neuron array and functional learning. Nat. Commun. 2023, 14, 2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Z. R.; Joshi, S.; Savel’ev, S.; Song, W. H.; Midya, R.; Li, Y. N.; Rao, M. Y.; Yan, P.; Asapu, S.; Zhuo, Y. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145.

    Article  Google Scholar 

  54. Wang, R. Z.; Chen, P. Y.; Hao, D. D.; Zhang, J. Y.; Shi, Q. Q.; Liu, D. P.; Li, L.; Xiong, L. Z.; Zhou, J. H.; Huang, J. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces 2021, 13, 43144–43154.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the photo provided by Yezhou Ni for image recognition. The authors acknowledge support from the Jiangsu Funding Program for Excellent Postdoctoral Talent, the National Natural Science Foundation of China (No. 52372055), and the Jiangsu Independent Innovation Fund Project of Agricultural Science and Technology (No. CX (21) 3163). The authors are grateful for the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Zhao, Lixing Kang or Qingwen Li.

Electronic Supplementary Material

12274_2023_6382_MOESM1_ESM.pdf

Salt-assisted vapor–liquid–solid growth of high-quality ultrathin nickel oxide flakes for artificial synapses in image recognition applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Shen, Z., Li, A. et al. Salt-assisted vapor–liquid–solid growth of high-quality ultrathin nickel oxide flakes for artificial synapses in image recognition applications. Nano Res. 17, 4622–4630 (2024). https://doi.org/10.1007/s12274-023-6382-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6382-7

Keywords

Navigation