Skip to main content
Log in

Stretchable on-skin touchless screen sensor enabled by ionic hydrogel

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Screen sensors are the most commonly used human-machine interfaces in our everyday life, which have been extensively applied in personal electronics like cellphones. Touchless screen sensors are attracting growing interest due to their distinct advantages of high interaction freedom, comfortability, and hand hygiene. However, the material compositions of current touchless screen sensors are rigid and fragile, hardly meeting the needs of wearable and stretchable on-skin electronics development. Additionally, these touchless screen sensors are also restricted by high power consumption, limited gesture types of recognition, and the requirement of light conditions. Here, we report a stretchable on-skin touchless screen sensor (OTSS) enabled by an ionic hydrogel-based triboelectric nanogenerator (TENG). Compared with current touchless screen sensors, the OTSS is stretchable, self-powered, and competent to recognize diverse gestures by making use of charges naturally carried on fingers without the need of sufficient light conditions. An on-skin noncontact screen operating system is further demonstrated on the basis of the OTSS, which could unlock a cellphone interface in touchless operation mode on the human skin. This work for the first time introduces the on-skin touchless concept to screen sensors and offers a direction to develop new-generation screen sensors for future cellphones and personal electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, K. K.; Kim, M.; Pyun, K.; Kim, J.; Min, J.; Koh, S.; Root, S. E.; Kim, J.; Nguyen, B. N. T.; Nishio, Y. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 2023, 6, 64–75.

    Google Scholar 

  2. Zhu, P. C.; Zhang, B. S.; Wang, H. Y.; Wu, Y. H.; Cao, H. J.; He, L. B.; Li, C. Y.; Luo, X. P.; Li, X.; Mao, Y. C. 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 7460–7467.

    Article  Google Scholar 

  3. Li, J.; Carlos, C.; Zhou, H.; Sui, J. J.; Wang, Y. K.; Silva-Pedraza, Z.; Yang, F.; Dong, Y. T.; Zhang, Z. Y.; Hacker, T. A. et al. Stretchable piezoelectric biocrystal thin films. Nat. Commun. 2023, 14, 6562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leng, Z. W.; Zhu, P. C.; Wang, X. C.; Wang, Y. F.; Li, P. S.; Huang, W.; Li, B. C.; Jin, R.; Han, N. N.; Wu, J. et al. Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human-machine merging interface. Adv. Funct. Mater. 2023, 33, 2211056.

    Article  CAS  Google Scholar 

  5. Yang, M.; Cheng, Y. F.; Yue, Y.; Chen, Y.; Gao, H.; Li, L.; Cai, B.; Liu, W. J.; Wang, Z. Y.; Guo, H. Z. et al. High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 2022, 9, 2200507.

    Article  CAS  Google Scholar 

  6. Liu, D. J.; Zhu, P. C.; Zhang, F. K.; Li, P. S.; Huang, W. H.; Li, C.; Han, N. N.; Mu, S. R.; Zhou, H.; Mao, Y. C. Intrinsically stretchable polymer semiconductor based electronic skin for multiple perceptions of force, temperature, and visible light. Nano Res. 2023, 16, 1196–1204.

    Article  CAS  Google Scholar 

  7. Zhao, X. F.; Yang, S. Q.; Wen, X. H.; Huang, Q. W.; Qiu, P. F.; Wei, T. R.; Zhang, H.; Wang, J. C.; Zhang, D. W.; Shi, X. et al. A fully flexible intelligent thermal touch panel based on intrinsically plastic Ag2S semiconductor. Adv. Mater. 2022, 34, 2107479.

    Article  CAS  Google Scholar 

  8. Guo, X. K.; Yang, F.; Sun, X. L.; Bai, Y. J.; Liu, G. J.; Liu, W. B.; Wang, R. G.; He, X. D. Anti- freezing self-adhesive self-healing degradable touch panel with ultra-stretchable performance based on transparent triboelectric nanogenerators. Adv. Funct. Mater. 2022, 32, 2201230.

    Article  CAS  Google Scholar 

  9. He, J.; Zhou, R. H.; Zhang, Y. F.; Gao, W. C.; Chen, T.; Mai, W. J.; Pan, C. F. Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite. Adv. Funct. Mater. 2022, 32, 2107281.

    Article  CAS  Google Scholar 

  10. Gao, G. R.; Yang, F. J.; Zhou, F. H.; He, J.; Lu, W.; Xiao, P.; Yan, H. Z.; Pan, C. F.; Chen, T.; Wang, Z. L. Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates. Adv. Mater. 2020, 32, 2004290.

    Article  CAS  Google Scholar 

  11. Tang, Y. J.; Zhou, H.; Sun, X. P.; Diao, N. H.; Wang, J. B.; Zhang, B. S.; Qin, C.; Liang, E. J.; Mao, Y. C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2020, 30, 1907893.

    Article  CAS  Google Scholar 

  12. Tsuji, S.; Kohama, T. A proximity and pressure touch screen using mutual capacitance measurement. In Proceedings of the 6th IIAE International Conference on Industrial Application Engineering, Okinawa, Japan, 2018, pp 311–316.

  13. Gao, S.; Shi, Y. P.; Liu, Q.; Xu, L. J.; Fu, B.; Yang, Z. Y. 4-Dimensional sensing in interactive displays enabled by both capacitive and piezoelectric based touch panel. IEEE Access 2019, 7, 33787–33794

    Article  Google Scholar 

  14. Chuang, C. T.; Chang, T.; Jau, P. H.; Chang, F. R. Touchless positioning system using infrared LED sensors. In Proceedings of 2014 IEEE International Conference on System Science and Engineering, Shanghai, China, 2014, pp 261–266.

  15. Kim, J. S.; Yun, S. J.; Kim, Y. S. Low-power motion gesture sensor with a partially open cavity package. Opt. Express 2016, 4, 10537–10546.

    Article  Google Scholar 

  16. Corenthy, L.; Giordano, M.; Hayden, R.; Griffiths, D.; Jeffrey, C.; Limerick, H.; Georgiou, O.; Carter, T.; Müller, J.; Subramanian, S. Touchless tactile displays for digital signage: Mid-air haptics meets large screens. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 2018, pp D103.

  17. Rakkolainen, I.; Sand, A.; Raisamo, R. A survey of mid-air ultrasonic tactile feedback. In Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM), San Diego, CA, USA, 2019, pp 94–944.

  18. Gan, R. Z.; Liang, J. M.; Ahmad, B. I.; Godsill, S. Modeling intent and destination prediction within a Bayesian framework: Predictive touch as a usecase. Data-Centric Eng. 2020, 1, e12.

    Article  Google Scholar 

  19. Liu, J. X.; Zhang, H. X.; Li, C. K. COMTIS: Customizable touchless interaction system for large screen visualization. Virtual Real. Intell. Hardw. 2020, 2, 162–174.

    Article  Google Scholar 

  20. Zhang, P. P.; Chen, Y. H.; Guo, Z. H.; Guo, W. B.; Pu, X.; Wang, Z. L. Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes. Adv. Funct. Mater. 2020, 30, 1909252.

    Article  CAS  Google Scholar 

  21. Zhou, Z. J.; Sun, W. G.; Lv, C. Z.; Gu, X. S.; Ju, J. P.; Li, Y. Q. Ultra-stretchable, antifreezing, and self-healing ZnO nanofluid-based hydrogels for triboelectric nanogenerators and self-powered biosensors. Eur. Polym. J. 2023, 200, 112500.

    Article  CAS  Google Scholar 

  22. Bao, S. X.; Gao, J. T.; Xu, T. F.; Li, N.; Chen, W. X.; Lu, W. Y. Anti-freezing and antibacterial conductive organohydrogel co-reinforced by 1D silk nanofibers and 2D graphitic carbon nitride nanosheets as flexible sensor. Chem. Eng. J. 2021, 411, 128470.

    Article  CAS  Google Scholar 

  23. Xu, L. G.; Huang, Z. K.; Deng, Z. S.; Du, Z. K.; Sun, T. L.; Guo, Z. H.; Yue, K. A transparent, highly stretchable, solvent-resistant, recyclable multifunctional ionogel with underwater self-healing and adhesion for reliable strain sensors. Adv. Mater. 2021, 33, 2105306.

    Article  CAS  Google Scholar 

  24. Shen, Z. Q.; Zhang, Z. L.; Zhang, N. B.; Li, J. H.; Zhou, P. W.; Hu, F. Q.; Rong, Y.; Lu, B. Y.; Gu, G. Y. High-stretchability, ultralow-hysteresis conductingpolymer hydrogel strain sensors for soft machines. Adv. Mater. 2022, 34, 2203650.

    Article  CAS  Google Scholar 

  25. Su, G. H.; Yin, S. Y.; Guo, Y. H.; Zhao, F.; Guo, Q. Q.; Zhang, X. X.; Zhou, T.; Yu, G. H. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 2021, 8, 1795–1804.

    Article  CAS  PubMed  Google Scholar 

  26. Ohm, Y.; Pan, C. F.; Ford, M. J.; Huang, X. N.; Liao, J. H.; Majidi, C. An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics. Nat. Electron. 2021, 4, 185–192.

    Article  CAS  Google Scholar 

  27. Lu, Y.; Yue, Y. Y.; Ding, Q. Q.; Mei, C. T.; Xu, X. W.; Wu, Q. L.; Xiao, H. N.; Han, J. Q. Self-recovery, fatigue-resistant, and multifunctional sensor assembled by a nanocellulose/carbon nanotube nanocomplex-mediated hydrogel. ACS Appl. Mater. Interfaces 2021, 13, 50281–50297.

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Z. X.; Yang, X.; Wu, J. Conductive hydrogel-and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 2021, 13, 2128–2144.

    Article  CAS  PubMed  Google Scholar 

  29. Wei, Y.; Xiang, L. J.; Ou, H. J.; Li, F.; Zhang, Y. Z.; Qian, Y. Y.; Hao, L. J.; Diao, J. J.; Zhang, M. L.; Zhu, P. H. et al. MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality. Adv. Funct. Mater. 2020, 30, 2005135.

    Article  CAS  Google Scholar 

  30. Huang, H. L.; Han, L.; Fu, X. B.; Wang, Y. L.; Yang, Z. L.; Pan, L. K.; Xu, M. Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv. Electron. Mater. 2020, 6, 2000239.

    Article  CAS  Google Scholar 

  31. Meng, Y.; Zhang, L. F.; Peng, M. J.; Shen, D. N.; Zhu, C. H.; Qian, S. Y.; Liu, J.; Cao, Y. F.; Yan, C. L.; Zhou, J. Q. et al. Developing thermoregulatory hydrogel electrolyte to overcome thermal runaway in zinc-ion batteries. Adv. Funct. Mater. 2022, 32, 2206653.

    Article  CAS  Google Scholar 

  32. Zhang, H. X.; Niu, W. B.; Zhang, S. F. Extremely stretchable, sticky and conductive double-network ionic hydrogel for ultra-stretchable and compressible supercapacitors. Chem. Eng. J. 2020, 387, 124105.

    Article  CAS  Google Scholar 

  33. Ji, G. C.; Hu, R. F.; Wang, Y. H.; Zheng, J. P. High energy density, flexible, low temperature resistant and self-healing Zn-ion hybrid capacitors based on hydrogel electrolyte. J. Energy Storage 2022, 46, 103858.

    Article  Google Scholar 

  34. Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J. X.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2022, 15, 2060–2068.

    Article  CAS  Google Scholar 

  35. Liu, Y. M.; Wong, T. H.; Huang, X. C.; Yiu, C. K.; Gao, Y. Y.; Zhao, L.; Zhou, J. K.; Park, W.; Zhao, Z.; Yao, K. M. et al. Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy 2022, 99, 107442.

    Article  CAS  Google Scholar 

  36. Yu, J.; Wang, M.; Dang, C.; Zhang, C. Z.; Feng, X.; Chen, G. X.; Huang, Z. Y.; Qi, H. S.; Liu, H. C.; Kang, J. Highly stretchable, transparent and conductive double-network ionic hydrogels for strain and pressure sensors with ultrahigh sensitivity. J. Mater. Chem. C 2021, 9, 3635–3641.

    Article  CAS  Google Scholar 

  37. Ying, B. B.; Chen, R. Z.; Zuo, R. Z.; Li, J. Y.; Liu, X. Y. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv. Funct. Mater. 2021, 31, 2104665.

    Article  CAS  Google Scholar 

  38. Zhang, L.; Wang, S. H.; Wang, Z. M.; Huang, Z.; Sun, P. H.; Dong, F. H.; Liu, H.; Wang, D.; Xu, X. A sweat-pH-enabled strongly adhesive hydrogel for self-powered e-skin applications. Mater. Horiz. 2023, 10, 2271–2280.

    Article  CAS  PubMed  Google Scholar 

  39. Kim, J. N.; Lee, J.; Lee, H.; Oh, I. K. Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease. Nano Energy 2021, 82, 105705.

    Article  CAS  Google Scholar 

  40. Cao, X. Y.; Ye, C.; Cao, L. T.; Shan, Y. C.; Ren, J.; Ling, S. J. Biomimetic spun silk ionotronic fibers for intelligent discrimination of motions and tactile stimuli. Adv. Mater. 2023, 35, 2300447.

    Article  CAS  Google Scholar 

  41. Dai, C. C.; Wang, Y.; Shan, Y. C.; Ye, C.; Lv, Z. C.; Yang, S.; Cao, L. T.; Ren, J.; Yu, H. P.; Liu, S. X. et al. Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. Mater. Horiz. 2023, 10, 136–148.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Z. Y.; Wang, Y.; Ren, Y. Y.; Jin, G. Q.; Zhang, C. C.; Chen, W.; Yan, F. Poly (ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater. Horiz. 2020, 7, 919–927.

    Article  CAS  Google Scholar 

  43. Zhou, H.; Huang, W.; Xiao, Z.; Zhang, S. C.; Li, W. Z.; Hu, J. H.; Feng, T. X.; Wu, J.; Zhu, P. C.; Mao, Y. C. Deep-learning-assisted noncontact gesture-recognition system for touchless human-machine interfaces. Adv. Funct. Mater. 2022, 32, 2208271.

    Article  CAS  Google Scholar 

  44. Mao, Y. C.; Zhang, N.; Tang, Y. J.; Wang, M.; Chao, M. J.; Liang, E. J. A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale 2017, 9, 14499–14505.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, N.; Qin, C.; Feng, T. X.; Li, J.; Yang, Z. R.; Sun, X. P.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Non- contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. Nano Res. 2020, 13, 1903–1907.

    Article  Google Scholar 

  46. Ficker, T. Electrification of human body by walking. J. Electrost. 2006, 64, 10–16.

    Article  Google Scholar 

  47. Takiguchi, K.; Wada, T.; Toyama, S. Human body detection that uses electric field by walking. J. Adv. Mech. Des. Syst. Manuf. 2007, 1, 294–305.

    Article  Google Scholar 

  48. Langkilde, F. W.; Svantesson, A. Identification of celluloses with Fourier-transform (FT) mid-infrared, FT-Raman and near-infrared spectrometry. J. Pharm. Biomed. Anal. 1995, 13, 409–414.

    Article  CAS  PubMed  Google Scholar 

  49. Zhu, M. S.; Wang, X. J.; Tang, H. M.; Wang, J. W.; Hao, Q.; Liu, L. X.; Li, Y.; Zhang, K.; Schmidt, O. G. Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 2020, 30, 1907218.

    Article  CAS  Google Scholar 

  50. Wang, B. J.; Li, J. M.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Stable hydrogel electrolytes for flexible and submarine-use Zn-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 46005–46014.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, B. H.; Chen, Q. Y.; Da, G. H.; Yao, J. R.; Shao, Z. Z.; Chen, X. A highly stretchable and anti-freezing silk-based conductive hydrogel for application as a self-adhesive and transparent ionotronic skin. J. Mater. Chem. C 2021, 9, 8955–8965.

    Article  CAS  Google Scholar 

  52. Liu, Y.; Wang, C.; Xue, J. T.; Huang, G. H.; Zheng, S.; Zhao, K.; Huang, J.; Wang, Y. Q.; Zhang, Y.; Yin, T. L. et al. Body temperature enhanced adhesive, antibacterial, and recyclable ionic hydrogel for epidermal electrophysiological monitoring. Adv. Healthcare Mater. 2022, 11, 2200653.

    Article  CAS  Google Scholar 

  53. Jiao, Q.; Cao, L. L.; Zhao, Z. J.; Zhang, H.; Li, J. J.; Wei, Y. P. Zwitterionic hydrogel with high transparency, ultrastretchability, and remarkable free zing resistance for wearable strain sensors. Biomacromolecules 2021, 22, 1220–1230.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, Q. H.; Pan, X. F.; Lin, C. M.; Ma, X. J.; Cao, S. L.; Ni, Y. H. Ultrafast gelling using sulfonated lignin-Fe3+ chelates to produce dynamic crosslinked hydrogel/coating with charming stretchable, conductive, self-healing, and ultraviolet-blocking properties. Chem. Eng. J. 2020, 396, 125341.

    Article  CAS  Google Scholar 

  55. Wang, M. X.; Zhang, P. Y.; Shamsi, M.; Thelen, J. L.; Qian, W.; Truong, V. K.; Ma, J.; Hu, J.; Dickey, M. D. Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 2022, 21, 359–365.

    Article  CAS  PubMed  Google Scholar 

  56. Wu, M.; Wang, X.; Xia, Y. F.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Guo, W. Y.; Li, Q. Q.; Yan, Z. G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967

    Article  CAS  Google Scholar 

  57. Pan, S. X.; Xia, M.; Li, H. H.; Jiang, X. L.; He, P. X.; Sun, Z. G.; Zhang, Y. H. Transparent, high-strength, stretchable, sensitive and anti-freezing poly(vinyl alcohol) ionic hydrogel strain sensors for human motion monitoring. J. Mater. Chem. C 2020, 8, 2827–2837

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 62074137 and 52303112), the Foundation for Outstanding Young Teachers in Universities of Henan Province (No. 2021GGJS014), and the China Postdoctoral Science Foundation (Nos. 2022TQ0281 and 2023M733213).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Lu or Yanchao Mao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Ling, D., Li, C. et al. Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res. 17, 4462–4470 (2024). https://doi.org/10.1007/s12274-023-6365-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6365-8

Keywords

Navigation