Skip to main content
Log in

In vivo real-time monitoring delayed administration of M2 macrophages to enhance healing of tendon by NIR-II fluorescence imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophage therapy. In this work, the second near-infrared (NIR-II) fluorescence imaging in vivo tracking of M2 macrophages during a pro-healing therapy in the mice model of rotator cuff injury revealed that the behavior of administrated macrophages was influenced by the timing of their administration. The delayed cell therapy (DCT) group had a longer retention time of injected M2 macrophages in the repairing tissue than that in the immediate cell therapy (ICT) group. Both Keller–Segel model and histological analysis further demonstrated that DCT altered the chemotaxis of M2 macrophages and improved the healing outcome of the repaired structure in comparison with ICT. Our results offer a possible explanation of previous conflicting results on reparative cell therapy and provoke reconsideration of the timing of these therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dreymueller, D.; Denecke, B.; Ludwig, A.; Jahnen-Dechent, W. Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing. Wound Repair Regen. 2013, 21, 44–54.

    Article  PubMed  Google Scholar 

  2. Duan, J.; Liu, X. S.; Wang, H. L.; Guo, S. W. The M2a macrophage subset may be critically involved in the fibrogenesis of endometriosis in mice. Reprod. Biomed. Online 2018, 37, 254–268.

    Article  CAS  PubMed  Google Scholar 

  3. Gulotta, L. V.; Kovacevic, D.; Ehteshami, J. R.; Dagher, E.; Packer, J. D.; Rodeo, S. A. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am. J. Sports. Med. 2009, 37, 2126–2133.

    Article  PubMed  Google Scholar 

  4. Murray, P. J.; Allen, J. E.; Biswas, S. K.; Fisher, E. A.; Gilroy, D. W.; Goerdt, S.; Gordon, S.; Hamilton, J. A.; Ivashkiv, L. B.; Lawrence, T. et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immnnity 2014, 41, 14–20.

    Article  CAS  Google Scholar 

  5. Arnold, L.; Henry, A.; Poron, F.; Baba-Amer, Y.; van Rooijen, N.; Plonquet, A.; Gherardi, R. K.; Chazaud, B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 2007, 204, 1057–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lucas, T.; Waisman, A.; Ranjan, R.; Roes, J.; Krieg, T.; Müller, W.; Roers, A.; Eming, S. A. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 2010, 184, 3964–3977.

    Article  CAS  PubMed  Google Scholar 

  7. Contreras-Muñoz, P.; Torrella, J. R.; Venegas, V.; Serres, X.; Vidal, L.; Vila, I.; Lahtinen, I.; Viscor, G.; Martínez-Ibáñez, V.; Peiró, J. L. et al. Muscle precursor cells enhance functional muscle recovery and show synergistic effects with postinjury treadmill exercise in a muscle injury model in rats. Am. J. Sports Med. 2021, 49, 1073–1085.

    Article  PubMed  Google Scholar 

  8. Chamberlain, C. S.; Clements, A. E. B.; Kink, J. A.; Choi, U.; Baer, G. S.; Halanski, M. A.; Hematti, P.; Vanderby, R. Extracellular vesicle-educated macrophages promote early achilles tendon healing. Stem Cells. 2019, 37, 652–662.

    Article  CAS  PubMed  Google Scholar 

  9. Jayme, T. S.; Leung, G.; Wang, A.; Workentine, M. L.; Rajeev, S.; Shute, A.; Callejas, B. E.; Mancini, N.; Beck, P. L.; Panaccione, R. et al. Human interleukin-4-treated regulatory macrophages promote epithelial wound healing and reduce colitis in a mouse model. Sci. Adv. 2020, 6, eaba4376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jetten, N.; Roumans, N.; Gijbels, M. J.; Romano, A.; Post, M. J.; de Winther, M. P. J.; van der Hulst, R. R. W. J.; Xanthoulea, S. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One. 2014, 4, e102994.

    Article  Google Scholar 

  11. D’Alessio, F. R.; Craig, J. M.; Singer, B. D.; Files, D. C.; Mock, J. R.; Garibaldi, B. T.; Fallica, J.; Tripathi, A.; Mandke, P.; Gans, J. H. et al. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 310, L733–L746.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Francos-Quijorna, I.; Amo-Aparicio, J.; Martinez-Muriana, A.; López-Vales, R. IL- 4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia. 2016, 64, 2079–2092.

    Article  PubMed  Google Scholar 

  13. Hunter, M. M.; Wang, A.; Parhar, K. S.; Johnston, M. J. G.; Van Rooijen, N.; Beck, P. L.; McKay, D. M. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology 2010, 138, 1395–1405.

    Article  CAS  PubMed  Google Scholar 

  14. Jetten, N.; Donners, M. M. P. C.; Wagenaar, A.; Cleutjens, J. P. M.; van Rooijen, N.; de Winther, M. P. J.; Post, M. J. Local delivery of polarized macrophages improves reperfusion recovery in a mouse hind limb ischemia model. PLoS One 2013, 8, e68811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raimondo, T. M.; Mooney, D. J. Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 10648–10653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826–2885.

    Article  CAS  PubMed  Google Scholar 

  17. Li, C. Y.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G. C.; Li, L.; Wu, D. M.; Wang, Q. B. In vivo real- time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014, 35, 393–400.

    Article  CAS  PubMed  Google Scholar 

  18. Wan, H.; Yue, J. Y.; Zhu, S. J.; Uno, T.; Zhang, X. D.; Yang, Q. L.; Yu, K.; Hong, G. S.; Wang, J. Y.; Li, L. L. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 2018, 9, 1171.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Welsher, K.; Sherlock, S. P.; Dai, H. J. Deep- tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, Y. M.; Chen, J.; Shang, X. L.; Feng, Z. J.; Chen, C.; Lu, J. Y.; Cai, J. Y.; Chen, Y. Z.; Zhang, J.; Hao, Y. F. et al. Visualizing the fate of intra-articular injected mesenchymal stem cells in vivo in the second near-infrared window for the effective treatment of supraspinatus tendon tears. Adv. Sci. 2019, 6, 1901018.

    Article  CAS  Google Scholar 

  21. Lebaschi, A. H.; Deng, X. H.; Camp, C. L.; Zong, J. C.; Cong, G. T.; Carballo, C. B.; Album, Z.; Rodeo, S. A. Biomechanical, histologic, and molecular evaluation of tendon healing in a new murine model of rotator cuff repair. Arthros.: J. Arthros. Relat. Surg. 2018, 34, 1173–1183.

    Article  Google Scholar 

  22. Chen, M.; Chen, Y. Z.; Feng, S. J.; Dong, S. X.; Sun, L. Y.; Li, H. Z.; Chen, F. C.; Thanh, N. T. K.; Li, Y. X.; Chen, S. Y. et al. SWIR fluorescence imaging in vivo monitoring and evaluating implanted M2 macrophages in skeletal muscle regeneration. Engineering, in press. DOI: https://doi.org/10.1016/j.eng.2023.05.010.

  23. Keller, E. F.; Segel, L. A. Model for chemotaxis. J. Theor. Biol. 1971, 30, 225–234.

    Article  CAS  PubMed  Google Scholar 

  24. Zhong, Y. T.; Jin, W. H.; Gao, H.; Sun, L. Y.; Wang, P.; Zhang, J.; Ong, M. T. Y.; Sai Chuen Bruma, F.; Chen, S.; Chen, J. A knitted PET patch enhances the maturation of regenerated tendons in bridging reconstruction of massive rotator cuff tears in a rabbit model. Am. J. Sports Med. 2023, 51, 901–911.

    Article  PubMed  Google Scholar 

  25. Chen, J. M.; Yu, Q.; Wu, B.; Lin, Z.; Pavlos, N. J.; Xu, J. K.; Ouyang, H. W.; Wang, A.; Zheng, M. H. Autologous tenocyte therapy for experimental Achilles tendinopathy in a rabbit model. Tissue Eng. Part A. 2011, 17, 2037–2048.

    Article  CAS  PubMed  Google Scholar 

  26. Cong, S.; Sun, Y. Y.; Lin, J. R.; Liu, S. H.; Chen, J. W. A Synthetic graft with multilayered co-electrospinning nanoscaffolds for bridging massive rotator cuff tear in a rat model. Am. J. Sports Med. 2020, 48, 1826–1836.

    Article  PubMed  Google Scholar 

  27. Kong, Y. F.; Chen, J.; Fang, H. W.; Heath, G.; Wo, Y.; Wang, W. L.; Li, Y. X.; Guo, Y.; Evans, S. D.; Chen, S. Y. et al. Highly fluorescent ribonuclease-a-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infra red window. Chem. Mater. 2016, 28, 3041–3050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dong, S. X.; Feng, S. J.; Chen, Y. Z.; Chen, M.; Yang, Y. M.; Zhang, J.; Li, H. Z.; Li, X. T.; Ji, L.; Yang, X. et al. Nerve suture combined with ADSCs injection under real-time and dynamic NIR-II fluorescence imaging in peripheral nerve regeneration in vivo. Front. Chem. 2021, 9, 676928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ying, W.; Cheruku, P. S.; Bazer, F. W.; Safe, S. H.; Zhou, B. Y. Investigation of macrophage polarization using bone marrow derived macrophages. J. Vis. Exp. 2013, 23, 50323.

    Google Scholar 

  30. Marsolais, D.; Côté, C. H.; Frenette, J. Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. J. Orthop. Res. 2001, 19, 1203–1209.

    Article  CAS  PubMed  Google Scholar 

  31. Angeline, M. E.; Rodeo, S. A. Biologics in the management of rotator cuff surgery. Clin. Sports Med. 2012, 31, 645–663.

    Article  PubMed  Google Scholar 

  32. Mandaliya, H.; Jones, M.; Oldmeadow, C.; Nordman, I. I. C. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): Neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl. Lung. Cancer Res. 2019, 8, 886–894.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sun, Y. Y.; Lin, J. R.; Luo, Z. W.; Chen, J. W. Preoperative lymphocyte to monocyte ratio can Be a prognostic factor in arthroscopic repair of small to large rotator cuff tears. Am. J. Sports Med. 2020, 48, 3042–3050.

    Article  PubMed  Google Scholar 

  34. Ahn, J. H.; Lee, S. H.; Choi, S. H.; Lim, T. K. Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: Comparison of remnant bundle preservation and standard technique. Am. J. Sports Med. 2010, 38, 1768–1777.

    Article  PubMed  Google Scholar 

  35. Li, H.; Tao, H. Y.; Cho, S.; Chen, S.; Yao, Z. J.; Chen, S. Y. Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: A comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am. J. Sports Med. 2012, 40, 1519–1526.

    Article  PubMed  Google Scholar 

  36. Liu, S. H.; Xie, Y. X.; Chen, Q. Y.; Sun, Y. Y.; Ding, Z. C.; Zhang, Y. H.; Chen, S. Y.; Chen, J. W. Tendon healing progression evaluated with magnetic resonance imaging signal intensity and its correlation with clinical outcomes within 1 year after rotator cuff repair with the suture-bridge technique. Am. J. Sports Med. 2020, 48, 697–705.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This animal research received the approval of ethics by Ethics Committee of Fudan University (No. 202208005Z). This work was supported by the National Natural Science Foundation of China (Nos. 81972129, 82072521, and 82111530200), Shanghai Talent Development Funding Scheme (No. 2020080), and Shanghai Committee of Science and Technology (Nos. 22DZ2204900 and 23ZR1445700). J. Chen and N. T. K. Thanh thank the Royal Society and National Natural Science Foundation of China for the International Exchanges program for funding. The authors thank Hao Chen and his team from Shanghai Institute of Materia Medica, Chinese Academy of Sciences for providing the NIR-II fluorescence imaging instrument.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunxia Li, Yuefeng Hao, Sijia Feng or Jun Chen.

Electronic supplementary material

12274_2023_6363_MOESM1_ESM.pdf

In vivo real-time monitoring delayed administration of M2 macrophages to enhance healing of tendon by NIR-II fluorescence imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chen, M., Yu, C. et al. In vivo real-time monitoring delayed administration of M2 macrophages to enhance healing of tendon by NIR-II fluorescence imaging. Nano Res. 17, 4379–4390 (2024). https://doi.org/10.1007/s12274-023-6363-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6363-x

Keywords

Navigation