Skip to main content
Log in

Edge dislocation-induced strains break the limit of PtNi alloys in boosting Pt mass activity for efficient alkaline hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Creating lattice defects and alloying to produce strain effect in Pt-based bimetallic alloys are both effective methods to optimize the crystal and electronic structure and improve the electrocatalytic performance. Unfortunately, the principles that govern the alkaline hydrogen evolution reaction (HER) performance remain unclear, which is detrimental to the rational design of efficient Pt-based electrocatalysts. Herein, PtNi alloys with different Pt/Ni ratios and edge dislocations were synthesized, and the effects of Pt/Ni composition and edge dislocations on the alkaline HER electrocatalytic activity of PtNi alloys were systematically studied. Combined experimental and theoretical investigations reveal that tuning Pt/Ni ratio results in only 1.1 times enhancements in Pt mass activity, whereas edge dislocations-induced extra tensile strain on Ni site and compressive strain on Pt site further boost the alkaline HER intrinsic activity at all Pt/Ni ratios. Impressively, the introduction of edge dislocations in PtNi alloys could break the limit of alloying in boosting Pt mass activity and result in up to 13.7-fold enhancement, in the case that Pt and Ni contents are nearly identical and thus edge dislocation density reaches the maximum. Fundamental mechanism studies demonstrate that the edge dislocation strategy could make a breakthrough in facilitating water dissociation kinetics of PtNi alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, P. T.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S. J.; Lu, G.; Yao, J. L.; Huang, X. Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.

    Article  CAS  Google Scholar 

  4. Mao, F. X.; Wang, Z. G.; Cheng, L. M.; Li, X. X.; Sun, K. Z.; Liu, P. F.; Yang, H. G. Electrodeposited multimetal alloyed NiMoCo on Ni mesh for efficient alkaline hydrogen evolution reaction. Energy Fuels 2023, 23, 18137–18144.

    Article  Google Scholar 

  5. Raja, D. S.; Cheng, C. C.; Ting, Y. C.; Lu, S. Y. NiMo-MOF-derived carbon-armored Ni4Mo alloy of an interwoven nanosheet structure as an outstanding pH-universal catalyst for hydrogen evolution reaction at high current densities. ACS Appl. Matee. & Interfaces 2023, 15, 20130–20140.

    Article  Google Scholar 

  6. Song, T.; Zhang, X.; Xie, C.; Yang, P. N- doped carbon nanotubes enhanced charge transport between Ni nanoparticles and g-C3N4 nanosheets for photocatalytic H2 generation and 4-nitrophenol removal. Carbon 2023, 210, 118052.

    Article  CAS  Google Scholar 

  7. Marini, S.; Salvi, P.; Nelli, P.; Pesenti, R.; Villa, M.; Kiros, Y. Stable and inexpensive electrodes for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2013, 38, 11484–11495.

    Article  CAS  Google Scholar 

  8. King, L. A.; Hubert, M. A.; Capuano, C.; Manco, J.; Danilovic, N.; Valle, E.; Hellstern, T. R.; Ayers, K.; Jaramillo, T. F. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 2019, 14, 1071–1074.

    Article  CAS  PubMed  Google Scholar 

  9. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

    Article  CAS  PubMed  Google Scholar 

  10. Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electeochem. Soc. 2010, 157, B1529–B1536.

    Article  CAS  Google Scholar 

  11. Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

    Article  CAS  Google Scholar 

  12. Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

    Article  CAS  PubMed  Google Scholar 

  13. Xing, Z. C.; Han, C.; Wang, D. W.; Li, Q.; Yang, X. R. Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal. 2017, 7, 7131–7135.

    Article  CAS  Google Scholar 

  14. Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

    Article  CAS  PubMed  Google Scholar 

  15. Dinh, C. T.; Jain, A.; De Arquer, F. P. G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X.; Cai, J.; Gregory, B. Z.; Voznyy, O. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 2018, 4, 107–114.

    Article  Google Scholar 

  16. Sun, J. P.; Zhang, Z. S.; Meng, X. C. Low-Pt supported on MOF-derived Ni(OH)2 with highly-efficiently electrocatalytic seawater splitting at high current density. Appl. Catal. B-Environ. 2023, 331, 122703.

    Article  CAS  Google Scholar 

  17. Kuang, P. Y.; Ni, Z. R.; Zhu, B. C.; Lin, Y.; Yu, J. G. Modulating the d-band center enables ultrafine Pt3Fe alloy nanoparticles for pH-universal hydrogen evolution reaction. Adv. Mater. 2023, 35, 2303030.

    Article  CAS  Google Scholar 

  18. Yu, W. H.; Zhang, Y. Y.; Qin, Y. N.; Zhang, D.; Liu, K.; Bagliuk, G. A.; Lai, J. P.; Wang, L. High-density frustrated Lewis pair for high-performance hydrogen evolution. Adv. Energy Mater. 2023, 13, 2203136.

    Article  CAS  Google Scholar 

  19. Zhou, M.; Li, H. F.; Long, A. C.; Zhou, B.; Lu, F.; Zhang, F. C.; Zhan, F.; Zhang, Z. X.; Xie, W. W.; Zeng, X. H. et al. Modulating 3d orbitals of Ni atoms on Ni-Pt edge sites enables highly-efficient alkaline hydrogen evolution. Adv. Energy Mater. 2021, 11, 2101789.

    Article  CAS  Google Scholar 

  20. Jiang, Y.; Wu, X. Q.; Yan, Y. C.; Luo, S.; Li, X.; Huang, J. B.; Zhang, H.; Yang, D. R. Coupling PtNi ultrathin nanowires with MXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Small 2019, 15, 1805474.

    Article  Google Scholar 

  21. Liu, Z. J.; Qi, J.; Liu, M. X.; Zhang, S. M.; Fan, Q. K.; Liu, H. P.; Liu, K.; Zheng, H. Q.; Yin, Y. D.; Gao, C. B. Aqueous synthesis of ultrathin platinum/non-noble metal alloy nanowires for enhanced hydrogen evolution activity. Angew. Chem., Int. Ed. 2018, 57, 11678–11682.

    Article  CAS  Google Scholar 

  22. Li, Z.; Fu, J. Y.; Feng, Y.; Dong, C. K.; Liu, H.; Du, X. W. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2019, 2, 1107–1114.

    Article  CAS  Google Scholar 

  23. Liu, S. L.; Shen, Y.; Zhang, Y.; Cui, B. H.; Xi, S. B.; Zhang, J. F.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 2022, 34, 2106973.

    Article  CAS  Google Scholar 

  24. Zhou, M.; Cheng, C. Q.; Dong, C. K.; Xiao, L. Y.; Zhao, Y.; Liu, Z. W.; Zhao, X. R.; Sasaki, K.; Cheng, H.; Du, X. W. et al. Dislocation network-boosted PtNi nanocatalysts welded on nickel foam for efficient and durable hydrogen evolution at ultrahigh current densities. Adv. Energy Mater. 2023, 13, 2202595.

    Article  CAS  Google Scholar 

  25. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  26. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 30, 17953–17979.

    Article  Google Scholar 

  27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  28. Hÿtch, M. J.; Houdellier, F. Mapping stress and strain in nanostructures by high-resolution transmission electron microscopy. Microelectron. Eng. 2007, 84, 460–463.

    Article  Google Scholar 

  29. Liu, S. L.; Hu, Z.; Wu, Y. Z.; Zhang, J. F.; Zhang, Y.; Cui, B. H.; Liu, C.; Hu, S.; Zhao, N. Q.; Han, X. P. et al. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 2020, 32, 2006034.

    Article  CAS  Google Scholar 

  30. Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

    Article  CAS  PubMed  Google Scholar 

  31. Deivaraj, T. C.; Chen, W. X.; Lee, J. Y. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. J. Mater. Chem. 2003, 13, 2555–2560.

    Article  CAS  Google Scholar 

  32. Wang, B.; Xiong, L. F.; Hao, H. J.; Cai, H. R.; Gao, P. F.; Liu, F. Z.; Yu, X. J.; Wu, C.; Yang, S. C. The “electric-dipole” effect of Pt-Ni for enhanced catalytic dehydrogenation of ammonia borane. J. Alloys Compds. 2020, 844, 156253.

    Article  CAS  Google Scholar 

  33. Zhang, C.; Liang, X.; Xu, R. N.; Dai, C. N.; Wu, B.; Yu, G. Q.; Chen, B. H.; Wang, X. L.; Liu, N. H2in situ inducing strategy on Pt surface segregation over low Pt doped PtNi5 nanoalloy with superhigh alkaline HER activity. Adv. Funct. Mater. 2021, 31, 2008298.

    Article  CAS  Google Scholar 

  34. Kong, F. P.; Ren, Z. H.; Banis, M. N.; Du, L.; Zhou, X.; Chen, G. Y.; Zhang, L.; Li, J. J.; Wang, S. Z.; Li, M. S. et al. Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 2020, 10, 4205–4214.

    Article  CAS  Google Scholar 

  35. Chen, Q.; Wei, B.; Wei, Y.; Zhai, P. B.; Liu, W.; Gu, X. K.; Yang, Z. L.; Zuo, J. H.; Zhang, R. F.; Gu, X. J. Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte. Appl. Catal. B Environ. 2022, 301, 120754.

    Article  CAS  Google Scholar 

  36. Gioria, E.; Li, S.; Mazheika, A.; D’Alnoncourt, R. N.; Thomas, A.; Rosowski, F. CuNi nanoalloys with tunable composition and oxygen defects for the enhancement of the oxygen evolution reaction. Angew. Chem., Int. Ed. 2023, 62, e202217888.

    Article  CAS  Google Scholar 

  37. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li, J. Y.; Xia, Z. M.; Xue, Q. Y.; Zhang, M. K.; Zhang, S.; Xiao, H.; Ma, Y. Y.; Qu, Y. Q. Insights into the interfacial Lewis acid-base pairs in CeO2-loaded CoS2 electrocatalysts for alkaline hydrogen evolution. Small 2021, 17, 2103018.

    Article  CAS  Google Scholar 

  39. Yang, Y.; Agarwal, R. G.; Hutchison, P.; Rizo, R.; Soudackov, A. V.; Lu, X. Y.; Herrero, E.; Feliu, J. M.; Hammes-Schiffer, S.; Mayer, J. M. et al. Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals. Nat. Chem. 2023, 15, 271–277.

    Article  CAS  PubMed  Google Scholar 

  40. George, T. Y.; Asset, T.; Avid, A.; Atanassov, P.; Zenyuk, I. V. Kinetic isotope effect as a tool to investigate the oxygen reduction reaction on Pt-based electrocatalysts—Part I: High-loading Pt/C and Pt extended surface. ChemPhysChem 2020, 21, 469–475.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Y.; Ma, C. Q.; Zhu, X. J.; Qu, K. Y.; Shi, P. D.; Song, L. Y.; Wang, J.; Lu, Q. P.; Wang, A. L. Hetero-interface manipulation in MoOx@Ru to evoke industrial hydrogen production performance with current density of 4000 mA cm−2. Adv. Energy. Mater. 2023, 13, 2301492.

    Article  CAS  Google Scholar 

  42. Xie, Y. F.; Cai, J. Y.; Wu, Y. S.; Zang, Y. P.; Zheng, X. S.; Ye, J.; Cui, P. X.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51822106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanwei Liu, Xueru Zhao, Enzuo Liu or Jing Yang.

Electronic Supplementary Material

12274_2023_6359_MOESM1_ESM.pdf

Edge dislocation-induced strains break the limit of PtNi alloys in boosting Pt mass activity for efficient alkaline hydrogen evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Zhao, Y., Liu, Z. et al. Edge dislocation-induced strains break the limit of PtNi alloys in boosting Pt mass activity for efficient alkaline hydrogen evolution. Nano Res. 17, 4711–4719 (2024). https://doi.org/10.1007/s12274-023-6359-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6359-6

Keywords

Navigation