Skip to main content
Log in

Fabrication of highly effective electrodes for iron chromium redox flow battery

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Iron-chromium redox flow batteries (ICRFBs) have emerged as promising energy storage devices due to their safety, environmental protection, and reliable performance. The carbon cloth (CC), often used in ICRFBs as the electrode, provides a suitable platform for electrochemical processes owing to its high surface area and interconnected porous structure. However, the CC electrodes have issues, such as, insufficient electron transfer performance, which limits their industrial application. Here, we employed silicic acid etching to carve dense nano-porous structures on the surface of CC electrodes based on the favorable design of ICRFBs and the fundamental principles of electrode polarization losses. As a result, we developed a multifunctional carbon cloth electrode with abundant vacancies, notably enhancing the performance of the battery. The fabricated electrode showcased a wealth of defect sites and superior electronic transport properties, offering an extensive and effective reaction area for rapidly flowing electrolytes. With an electrode compression ratio of 40% and the highest current density in ICRFBs so far (140 mA·cm−2), the battery achieved the average energy efficiency of 81.3%, 11.24% enhancement over the previously published work. Furthermore, throughout 100 charge–discharge cycles, the average energy efficiency degradation was negligible (∼ 0.04%), which has the potential to become the most promising candidate for large-scale and long-term electrochemical energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2000381

    Article  CAS  Google Scholar 

  2. Ager, J. W.; Lapkin, A. A. Chemical storage of renewable energy. Science 2018, 360, 707–708.

    Article  CAS  PubMed  Google Scholar 

  3. Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X. D.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. A metal-free organic-inorganic aqueous flow battery. Nature 2014, 505, 195–198.

    Article  CAS  PubMed  Google Scholar 

  4. Lv, J. Q.; Xie, J. F.; Mohamed, A. G. A.; Zhang, X.; Wang, Y. B. Photoelectrochemical energy storage materials: Design principles and functional devices towards direct solar to electrochemical energy storage. Chem. Soc. Rev. 2022, 51, 1511–1528.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, E. W.; Liu, T.; Jónsson, E.; Lee, J.; Temprano, I.; Jethwa, R. B.; Wang, A. Q.; Smith, H.; Carretero-González, J.; Song, Q. L. et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 2020, 579, 224–228

    Article  CAS  PubMed  Google Scholar 

  6. Singh, V.; Kim, S.; Kang, J.; Byon, H. R. Aqueous organic redox flow batteries. Nano Res. 2019, 12, 1988–2001.

    Article  CAS  Google Scholar 

  7. Davies, D. M.; Verde, M. G.; Mnyshenko, O.; Chen, Y. R.; Rajeev, R.; Meng, Y. S.; Elliott, G. Combined economic and technological evaluation of battery energy storage for grid applications. Nat. Energy 2018, 4, 42–50.

    Article  Google Scholar 

  8. Ziegler, M. S. Evaluating and improving technologies for energy storage and backup power. Joule 2021, 5, 1925–1927.

    Article  Google Scholar 

  9. Jia, Y. R.; Zhang, J.; Kong, D. B.; Zhang, C.; Han, D. L.; Han, J. W.; Tao, Y.; Lv, W.; Yang Q. H. Practical graphene technologies for electrochemical energy storage. Adv. Funct. Mater. 2022, 32, 2204272.

    Article  CAS  Google Scholar 

  10. Zhang, Z. Y.; Ding, T.; Zhou, Q.; Sun, Y. G.; Qu, M.; Zeng, Z. Y.; Ju, Y. T.; Li, L.; Wang, K.; Chi, F. D. A review of technologies and applications on versatile energy storage systems. Renew. Sustain. Energy Rev. 2021, 148, 111263.

    Article  Google Scholar 

  11. Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 2017, 10, 4082–4114.

    Article  CAS  Google Scholar 

  12. Nikiforidis, G.; van de Sanden, M. C. M.; Tsampas, M. N. High and intermediate temperature sodium-sulfur batteries for energy storage: Development, challenges and perspectives. RSC Adv. 2019, 9, 5649–5673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yokoshima, T.; Mukoyama, D.; Nara, H.; Maeda, S.; Nakazawa, K.; Momma, T.; Osaka, T. Impedance measurements of kilowatt-class lithium ion battery modules/cubicles in energy storage systems by square-current electrochemical impedance spectroscopy. Electrochim. Acta 2017, 246, 800–811.

    Article  CAS  Google Scholar 

  14. Tang, G. G.; Yang, Z. J.; Xu, T. W. Two- electron storage electrolytes for aqueous organic redox flow batteries. Cell Rep. Phys. Sci. 2022, 3, 101195.

    Article  CAS  Google Scholar 

  15. Li, B.; Liu, J. Progress and directions in low-cost redox-flow batteries for large-scale energy storage. Natl. Sci. Rev. 2017, 4, 91–105.

    Article  CAS  Google Scholar 

  16. Liu, X. Q.; Li, T. Y.; Yuan, Z. Z.; Li, X. F. Low- cost all-iron flow battery with high performance towards long-duration energy storage. J. Energy Chem. 2022, 73, 445–451.

    Article  CAS  Google Scholar 

  17. Kuzmin, I.; Loskutov, A.; Osetrov, E.; Kurkin, A. Source for autonomous power supply system based on flow battery. Energies 2022, 15, 3027.

    Article  CAS  Google Scholar 

  18. Waters, S. E.; Robb, B. H.; Marshak, M. P. Effect of chelation on iron-chromium redox flow batteries. ACS Energy Lett. 2020, 5, 1758–1762.

    Article  CAS  Google Scholar 

  19. Liu, Y. Y.; Xu, J.; Lu, S. F.; Xiang, Y. Titanium nitride nanorods array-decorated graphite felt as highly efficient negative electrode for iron-chromium redox flow battery. Small 2023, 19, 2300943.

    Article  CAS  Google Scholar 

  20. Liu, Y. P.; Niu, Y. C.; Ouyang, X. C.; Guo, C.; Han, P. Y.; Zhou, R. C.; Heydari, A.; Zhou, Y.; Ikkala, O.; Tigranovich, G. A. et al. Progress of organic, inorganic redox flow battery and mechanism of electrode reaction. Nano Res. Energy 2023, 2, e9120081.

    Article  Google Scholar 

  21. Kong, T.; Wang, Y. X.; Liu, S. N.; Liu, Y.; Zhou, M. H.; Li, B. F.; Duan, X. G.; Chen, C. M.; Wang, S. B. Electron transfer to direct oxidation of aqueous organics by perovskites. Nano Res. 2023, 16, 6316–6325.

    Article  CAS  Google Scholar 

  22. Xie, C. Y.; Yan, H.; Song, T. F.; Song, Y. X.; Yan, C. W.; Tang, A. Catalyzing anode Cr2+/Cr3+ redox chemistry with bimetallic electrocatalyst for high-performance iron-chromium flow batteries. J. Power Sources 2023, 564, 232860.

    Article  CAS  Google Scholar 

  23. Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries. J. Power Sources 2017, 352, 77–82.

    Article  CAS  Google Scholar 

  24. Zhang, H.; Chen, N.; Sun, C. Y.; Luo, X. D. Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron — chromium redox flow battery. Int. J. Energy Res. 2020, 44, 3839–3853.

    Article  CAS  Google Scholar 

  25. Zhang, H.; Tan, Y.; Luo, X. D.; Sun, C. Y.; Chen, N. Polarization effects of a rayon and polyacrylonitrile based graphite felt for iron-chromium redox flow batteries. ChemElectroChem 2019, 6, 3175–3188.

    Article  CAS  Google Scholar 

  26. Dinesh, A.; Anantha, M. S.; Santosh, M. S.; Priya, M. G.; Venkatesh, K.; Yogesh Kumar, K. S.; Raghu, M. S.; Muralidhara, H. B. Improved performance of iron-based redox flow batteries using WO3 nanoparticles decorated graphite felt electrode. Ceram. Int. 2021, 47, 10250–10260.

    Article  CAS  Google Scholar 

  27. Hossain, H.; Abdullah, N.; Tan, K. H.; Saidur, R.; Mohd Radzi, M. A.; Shafie, S. Evolution of vanadium redox flow battery in electrode. Chem. Record, in press, DOI: https://doi.org/10.1002/tcr.202300092.

  28. Sheng, H.; Ma, Q.; Yu, J. G.; Zhang, X. D.; Zhang, W.; Yin, Y. X.; Wu, X. W.; Zeng, X. X.; Guo, Y. G. Robust electrodes with maximized spatial catalysis for vanadium redox flow batteries. ACS Appl Mater. Interfaces 2018, 10, 38922–38927.

    Article  CAS  PubMed  Google Scholar 

  29. Cao, X.; Jie, Y.; Ma, P. Power generation by contact and the potential applications in new energy. Nano Energy 2021, 87, 106167.

    Article  CAS  Google Scholar 

  30. Emmel, D.; Hofmann, J. D.; Arlt, T.; Manke, I.; Wehinger, G. D.; Schröder, D. Understanding the Impact of compression on the active area of carbon felt electrodes for redox flow batteries. ACS Appl. Energy Mater. 2020, 3, 4384–4393.

    Article  CAS  Google Scholar 

  31. Yue, M.; Lv, Z. Q.; Zheng, Q.; Li, X. F.; Zhang, H. M. Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries. Appl. Energy 2019, 235, 495–508.

    Article  CAS  Google Scholar 

  32. Maruyama, J.; Maruyama, S.; Fukuhara, T.; Hanafusa, K. Efficient edge plane exposure on graphitic carbon fiber for enhanced flow-battery reactions. J. Phys. Chem. C 2017, 121, 24425–24433.

    Article  CAS  Google Scholar 

  33. Lee, K. M.; Pahlevaninezhad, M.; Smith, V.; Abouali, S.; Orfino, F. P.; Kjeang, E.; Pope, M. A.; Roberts, E. P. L.; Gostick, J. T. Improvement of vanadium redox flow battery performance obtained by compression and laser perforation of electrospun electrodes. Mater. Today Energy 2023, 35, 101333.

    Article  CAS  Google Scholar 

  34. Hao, H. H.; Zhang, Q. A.; Feng, Z. Y.; Tang, A. Regulating flow field design on carbon felt electrode towards high power density operation of vanadium flow batteries. Chem. Eng. J. 2022, 450, 138170.

    Article  CAS  Google Scholar 

  35. Long, T.; Long, Y.; Ding, M.; Xu, Z. Z.; Xu, J.; Zhang, Y. Q.; Bai, M. L.; Sun, Q. J.; Chen, G.; Jia, C. K. Large scale preparation of 20 cm × 20 cm graphene modified carbon felt for high performance vanadium redox flow battery. Nano Res. 2021, 14, 3538–3544.

    Article  CAS  Google Scholar 

  36. He, Z. X.; Chen, Z. S.; Meng, W.; Jiang, Y. Q.; Cheng, G.; Dai, L.; Wang, L. Modified carbon cloth as positive electrode with high electrochemical performance for vanadium redox flow batteries. J. Energy Chem. 2016, 25, 720–725.

    Article  Google Scholar 

  37. Zhang, D.; Cai, Q.; Taiwo, O. O.; Yufit, V.; Brandon, N. P.; Gu, S. The effect of wetting area in carbon paper electrode on the performance of vanadium redox flow batteries: A three-dimensional lattice Boltzmann study. Electrochim. Acta 2018, 283, 1806–1819.

    Article  CAS  Google Scholar 

  38. Xu, Q.; Wang, S. Y.; Xu, C. M.; Chen, X. Y.; Zeng, S. W.; Li, C. Y.; Zhou, T.; Zhou, T. H.; Niu, Y. C. Synergistic effect of electrode defect regulation and Bi catalyst deposition on the performance of iron-chromium redox flow battery. Chin. Chem. Lett. 2023, 34, 108188.

    Article  CAS  Google Scholar 

  39. Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries. J. Power Sources 2016, 329, 247–254.

    Article  CAS  Google Scholar 

  40. Guo, X. S.; Wang, L.; Zeng, J.; Shao, Y. L.; Cui, W. Y.; Zhang, C.; Wang, W. J.; Hao, C. C.; Li, G. C. Defect-rich MoSx/carbon nanofiber arrays on carbon cloth for highly efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 23118–23125.

    Article  CAS  Google Scholar 

  41. Li, W. Y.; Wu, T. X.; Zhang, S. B.; Liu, Y. Y.; Zhao, C. J.; Liu, G. Q.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions. Chem. Commun. 2018, 54, 11188–11191.

    Article  CAS  Google Scholar 

  42. Long, B.; Ma, J. F.; Song, T.; Wang, X. Y.; Tong, Y. X. Tailoring superficial morphology, defect and functional group of commercial carbon cloth for a flexible, stable and high-capacity anode in sodium ion battery. Electrochim. Acta 2021, 374, 137934.

    Article  CAS  Google Scholar 

  43. Liu, L. S.; Zhang, X. H.; Zhang, D. H.; Zhang, K. Y.; Hou, S. Y.; Wang, S. L.; Zhang, Y. F.; Peng, H. Q.; Liu, J. G.; Yan, C. W. Regulating the N/B ratio to construct B, N co-doped carbon nanotubes on carbon felt for high-performance vanadium redox flow batteries. Chem. Eng. J. 2023, 473, 145454.

    Article  CAS  Google Scholar 

  44. Lu, W. J.; Xu, P. C.; Shao, S. Y.; Li, T. Y.; Zhang, H. M.; Li, X. F. Multifunctional carbon felt electrode with N-rich defects enables a long-cycle zinc — bromine flow battery with ultrahigh power density. Adv. Funct. Mater. 2021, 31, 2102913.

    Article  CAS  Google Scholar 

  45. Gursu, H.; Gencten, M.; Sahin, Y. Synthesis of phosphorus doped graphenes via the Yucel’s method as the positive electrode of a vanadium redox flow battery. J. Electrochem. Soc. 2021, 168, 060504.

    Article  CAS  Google Scholar 

  46. Hassan, A.; Haile, A. S.; Tzedakis, T.; Hansen, H. A.; de Silva, P. The role of oxygenic groups and sp3 carbon hybridization in activated graphite electrodes for vanadium redox flow batteries. ChemSusChem 2021, 14, 3945–3952.

    Article  CAS  PubMed  Google Scholar 

  47. Zhi, L. P.; Li, T. Y.; Liu, X. Q.; Yuan, Z. Z.; Li, X. F. Functional complexed zincate ions enable dendrite-free long cycle alkaline zinc-based flow batteries. Nano Energy 2022, 102, 107697.

    Article  CAS  Google Scholar 

  48. Yuan, F.; Shi, C. H.; Li, Q. L.; Wang, J.; Zhang, D.; Wang, Q. J.; Wang, H.; Li, Z. J.; Wang, W.; Wang, B. Unraveling the effect of intrinsic carbon defects on potassium storage performance. Adv. Funct. Mater. 2022, 32, 2208966.

    Article  CAS  Google Scholar 

  49. Cheng, G. Z.; Zhang, W. Z.; Wang, W.; Wang, H. L.; Wang, Y. X.; Shi, J.; Chen, J. W.; Liu, S.; Huang, M. H.; Mitlin, D. Sulfur and nitrogen codoped cyanoethyl cellulose-derived carbon with superior gravimetric and volumetric capacity for potassium ion storage. Carbon Energy 2022, 4, 986–1001.

    Article  CAS  Google Scholar 

  50. Zhang, W. L.; Cao, Z.; Wang, W. X.; Alhajji, E.; Emwas, A. H.; Costa, P. M. E. J.; Cavallo, L.; Alshareef, H. N. A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew. Chem. 2020, 132, 4478–4485.

    Article  Google Scholar 

  51. Zhong, Y. L.; Dai, W. X.; Liu, D.; Wang, W.; Wang, L. T.; Xie, J. P.; Li, R.; Yuan, Q. L.; Hong, G. Nitrogen and fluorine dual doping of soft carbon nanofibers as advanced anode for potassium ion batteries. Small 2021, 17, 2101576.

    Article  CAS  Google Scholar 

  52. Kim, S.; Hood, S. N.; Park, J. S.; Whalley, L. D.; Walsh, A. Quickstart guide for first-principles modelling of point defects in crystalline materials. J. Phys.: Energy 2020, 2, 036001.

    CAS  Google Scholar 

  53. Warner, J. H.; Margine, E. R.; Mukai, M.; Robertson, A. W.; Giustino, F.; Kirkland, A. I. Dislocation- driven deformations in graphene. Science 2012, 337, 209–212.

    Article  CAS  PubMed  Google Scholar 

  54. Li, Z.; Guo, L. L.; Chen, N.; Su, Y.; Wang, X. M. Boric acid thermal etching graphite felt as a high-performance electrode for iron-chromium redox flow battery. Mater. Res. Express 2022, 9, 025601.

    Article  Google Scholar 

  55. Tang, C.; Zhang, Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects. Adv. Mater. 2017, 29, 1604103.

    Article  Google Scholar 

  56. Brown, L. D.; Neville, T. P.; Jervis, R.; Mason, T. J.; Shearing, P. R.; Brett, D. J. L. The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries. J. Energy Storage 2016, 8, 91–98.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Nos. 22308378, 22308380, and 52211530034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Guo, C., Liu, Y. et al. Fabrication of highly effective electrodes for iron chromium redox flow battery. Nano Res. 17, 3988–3996 (2024). https://doi.org/10.1007/s12274-023-6324-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6324-4

Keywords

Navigation