Skip to main content
Log in

Biomimetic leaf structures for ultra-thin electromagnetic wave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultra-thin electromagnetic wave (EMW) absorbers present challenging demands on EMW absorption performance. Drawing inspiration from heather leaf structures, this study introduces an innovative design strategy for EMW absorbing material, proposing biomimetic leaf SnO2 structures (bio-SnO2) on carbon fabric (CF). By employing leaf-shaped SnS2 as precursors, biomimetic leaf SnO2 nanostructures are constructed on CF surface after a simple thermal treatment, resulting in bio-SnO2@CF composite. Experimental results indicate that bio-SnO2@CF exhibits an exceptional minimum reflection loss of −54.8 dB at an incredibly thin thickness of 1.2 mm. Radar cross section (RCS) simulations further validate the outstanding EMW attenuation ability of bio-SnO2@CF, attaining a maximum RCS reduction value of 16.9 dBm2 at an incident wave angle of θ = 0°. This novel research showcases the biomimetic structural design strategy and its remarkable function in enhancing the EMW absorbing performance at ultra-thin absorber thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, C.; Shi, Y. N.; Li, X. A.; Wu, H. J.; Shen, Y. F.; Guo, W. C.; Tian, K. S.; Wang, H. Y. Architecture inspired structure engineering toward carbon nanotube hybrid for microwave absorption promotion. iScience 2022, 25, 105203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, J. L.; Zhang, L. M.; Wu, H. J. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200544.

    Article  CAS  Google Scholar 

  3. Tao, J. Q.; Xu, L. L.; Pei, C. B.; Gu, Y. S.; He, Y. R.; Zhang, X. F.; Tao, X. W.; Zhou, J. T.; Yao, Z. J.; Tao, S. F. et al. Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 2023, 33, 2211996.

    Article  CAS  Google Scholar 

  4. Zhao, H. H.; Wang, F. Y.; Cui, L. R.; Xu, X. Z.; Han, X. J.; Du, Y. C. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review. Nano-MicroLett. 2021, 13, 208.

    CAS  Google Scholar 

  5. Li, J. F.; Zhang, N.; Zhao, H. T.; Li, Z. G.; Tian, B.; Du, Y. C. Cornstalk-derived macroporous carbon materials with enhanced microwave absorption. J. Mater. Sci.: Mater. Electron. 2021, 32, 25758–25768.

    CAS  Google Scholar 

  6. Liu, D. W.; Du, Y. C.; Xu, P.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; Han, X. J. Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 2021, 9, 5086–5096.

    Article  CAS  Google Scholar 

  7. Wu, Y. H.; Tan, S. J.; Liu, P. Y.; Zhang, Y.; Li, P.; Ji, G. B. Controllable heterogeneous interfaces and dielectric regulation of hollow raspberry-shaped Fe3O4@rGO hybrids for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 151, 10–18.

    Article  CAS  Google Scholar 

  8. Niu, H. H.; Tu, X. Y.; Zhang, S.; Li, Y. Y.; Wang, H. L.; Shao, G.; Zhang, R.; Li, H. X.; Zhao, B.; Fan, B. B. Engineered core-shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 2022, 446, 137260.

    Article  CAS  Google Scholar 

  9. Sista, K. S.; Dwarapudi, S.; Kumar, D.; Sinha, G. R.; Moon, A. P. Carbonyl iron powders as absorption material for microwave interference shielding: A review. J. Alloys Compd. 2021, 853, 157251.

    Article  CAS  Google Scholar 

  10. Tahir, D.; Heryanto, H.; Ilyas, S.; Fahri, A. N.; Rahmat, R.; Rahmi, M. H.; Taryana, Y.; Sukaryo, S. G. Excellent electromagnetic wave absorption of Co/Fe2O3 composites by additional activated carbon for tuning the optical and the magnetic properties. J. Alloys Compd. 2021, 864, 158780.

    Article  CAS  Google Scholar 

  11. Adebayo, L. L.; Soleimani, H.; Yahya, N.; Abbas, Z.; Wahaab, F. A.; Ayinla, R. T.; Ali, H. Recent advances in the development of Fe3O4-based microwave absorbing materials. Ceram. Int. 2020, 46, 1249–1268.

    Article  CAS  Google Scholar 

  12. Wu, N. N.; Du, W. J.; Hu, Q.; Vupputuri, S.; Jiang, Q. L. Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 2021, 13, 11–23.

    CAS  Google Scholar 

  13. Zhao, B.; Deng, J. S.; Zhang, R.; Liang, L. Y.; Fan, B. B.; Bai, Z. Y.; Shao, G.; Park, C. B. Recent advances on the electromagnetic wave absorption properties of Ni based materials. Eng. Sci. 2018, 3, 5–40.

    Google Scholar 

  14. Wang, B. L.; Wu, Q.; Fu, Y. G.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109.

    Article  CAS  Google Scholar 

  15. Elmahaishi, M. F.; Azis, R. S.; Ismail, I.; Muhammad, F. D. A review on electromagnetic microwave absorption properties: Their materials and performance. J. Mater. Res. Technol. 2022, 20, 2188–2220.

    Article  CAS  Google Scholar 

  16. Jiang, B.; Qi, C. L.; Yang, H.; Wu, X.; Yang, W.; Zhang, C.; Li, S. Y.; Wang, L. H.; Li, Y. F. Recent advances of carbon-based electromagnetic wave absorption materials facing the actual situations. Carbon 2023, 208, 390–409.

    Article  CAS  Google Scholar 

  17. Gai, L. X.; Zhao, H. H.; Wang, F. Y.; Wang, P.; Liu, Y. L.; Han, X. J.; Du, Y. C. Advances in core-shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 2022, 15, 9410–9439.

    Article  Google Scholar 

  18. Huo, K. L.; Yang, S. H.; Zong, J. Y.; Chu, J. J.; Wang, Y. D.; Cao, M. S. Carbon-based EM functional materials and multi-band microwave devices: Current progress and perspectives. Carbon 2023, 213, 118193.

    Article  CAS  Google Scholar 

  19. Zhang, S. J.; Cheng, B.; Jia, Z. R.; Zhao, Z. W.; Jin, X. T.; Zhao, Z. H.; Wu, G. L. The art of framework construction: Hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 1658–1698.

    Article  Google Scholar 

  20. Tiwari, A. P.; Chae, S. H.; Ojha, G. P.; Dahal, B.; Mukhiya, T.; Lee, M.; Chhetri, K.; Kim, T.; Kim, H. Y. Three-dimensional porous carbonaceous network with in-situ entrapped metallic cobalt for supercapacitor application. J. Colloid Interface Sci. 2019, 553, 622–630.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, L.; Li, X.; Li, Q. Q.; Yu, X. F.; Zhao, Y. H.; Zhang, J.; Wang, M.; Che, R. C. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 2019, 15, 1900900.

    Article  Google Scholar 

  22. Tang, S. F.; Hu, C. L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review. J. Mater. Sci. Technol. 2017, 33, 117–130.

    Article  CAS  Google Scholar 

  23. Saito, N.; Aoki, K.; Usui, Y.; Shimizu, M.; Hara, K.; Narita, N.; Ogihara, N.; Nakamura, K.; Ishigaki, N.; Kato, H. et al. Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chem. Soc. Rev. 2011, 40, 3824–3834.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y.; Li, A. Y.; Zhang, S. H.; Guo, B. B.; Niu, D. T. A review on new methods of recycling waste carbon fiber and its application in construction and industry. Constr. Build. Mater. 2023, 367, 130301.

    Article  CAS  Google Scholar 

  25. Chua, C. Y. X.; Liu, H. C.; Di Trani, N.; Susnjar, A.; Ho, J.; Scorrano, G.; Rhudy, J.; Sizovs, A.; Lolli, G.; Hernandez, N. et al. Carbon fiber reinforced polymers for implantable medical devices. Biomaterials 2021, 271, 120719.

    Article  CAS  PubMed  Google Scholar 

  26. Han, X. P.; Huang, Y.; Wang, J. M.; Zhang, G. Z.; Li, T. H.; Liu, P. B. Flexible hierarchical ZnO/AgNWs/carbon cloth-based film for efficient microwave absorption, high thermal conductivity and strong electro-thermal effect. Compos., Part B: Eng. 2022, 229, 109458.

    Article  CAS  Google Scholar 

  27. Wang, Z. H.; Yang, L. X.; Zhou, Y.; Xu, C.; Yan, M.; Wu, C. NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2021, 13, 16713–16721.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Z. H.; Tian, K. H.; Zhang, C.; Shu, R. W.; Zhu, J. B.; Liu, Y.; Huang, Y. N.; Liu, X. W. In-situ hydrothermal synthesis of NiCo alloy particles@hydrophilic carbon cloth to construct corncob-like heterostructure for high-performance electromagnetic wave absorbers. J. Colloid Interface Sci. 2022, 616, 823–833

    Article  CAS  PubMed  Google Scholar 

  29. Chen, Z. M.; Zhang, Y.; Wang, Z. D.; Wu, Y.; Zhao, Y.; Liu, L.; Ji, G. B. Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder. Carbon 2023, 201, 542–548.

    Article  CAS  Google Scholar 

  30. An, Q.; Li, D. W.; Liao, W. H.; Liu, T. T.; Joralmon, D.; Li, X. J.; Zhao, J. M. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv. Mater. 2023, 35, 2300659.

    Article  CAS  Google Scholar 

  31. Vogelman, T. C.; Nishio, J. N.; Smith, W. K. Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1996, 1, 65–70.

    Article  Google Scholar 

  32. F. W.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem., Int. Ed. 2017, 36, 505–509.

    Google Scholar 

  33. Gu, Y. J.; Wen, W.; Wu, J. M. Simple air calcination affords commercial carbon cloth with high areal specific capacitance for symmetrical supercapacitors. J. Mater. Chem. A 2018, 6, 21078–21086.

    Article  CAS  Google Scholar 

  34. Hou, S. K.; Wang, Y.; Gao, F.; Wang, F. Y.; Yang, H.; Jin, F.; Bai, G. X.; Cao, Z. H.; Du, Y. C. In situ growing fusiform SnO2 nanocrystals film on carbon fiber cloth as an efficient and flexible microwave absorber. Mater. Des. 2023, 223, 111576

    Article  Google Scholar 

  35. Vogelmann, T. C.; Bornman, J. F.; Yates, D. J. Focusing of light by leaf epidermal cells. Physiol. Plant. 1996, 98, 43–56.

    Article  CAS  Google Scholar 

  36. Vogelmann, T. C. Plant tissue optics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 231–251.

    Article  Google Scholar 

  37. Wang, L. Q.; Yuan, J. R.; Zhao, Q. Q.; Wang, Z. T.; Zhu, Y. Q.; Ma, X. L.; Cao, C. B. Supported SnS2 nanosheet array as binder-free anode for sodium ion batteries. Electrochim. Acta 2019, 308, 174–184.

    Article  CAS  Google Scholar 

  38. Zhang, G. P.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. SnS2/SnO2 heterostructured nanosheet arrays grown on carbon cloth for efficient photocatalytic reduction of Cr(VI). J. Colloid Interface Sci. 2018, 514, 306–315.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, C. J.; Wang, Y. X.; Jiang, H. T.; Tan, H. X.; Liu, D. M. Continuous in-situ growth of carbon nanotubes on carbon fibers at various temperatures for efficient electromagnetic wave absorption. Carbon 2022, 200, 94–107.

  40. Min, X.; Sun, B.; Chen, S.; Fang, M. H.; Wu, X. W.; Liu, Y. G.; Abdelkader, A.; Huang, Z. H.; Liu, T.; Xi, K. et al. A textile-based SnO2 ultra- flexible electrode for lithium-ion batteries. Energy Storage Mater. 2019, 16, 597–606.

    Article  Google Scholar 

  41. Narsimulu, D.; Nagaraju, G.; Chandra Sekhar, S.; Ramulu, B.; Su Yu, J. Three- dimensional porous SnO2/carbon cloth electrodes for high-performance lithium- and sodium-ion batteries. Appl. Surf. Sci. 2021, 538, 148033.

    Article  CAS  Google Scholar 

  42. Le, T. H.; Truong, Q. D.; Kimura, T.; Li, H. H.; Guo, C. S.; Yin, S.; Sato, T.; Ling, Y. C. Construction of 3D hierarchical SnO2 microspheres from porous nanosheets towards NO decomposition. Solid State Sci. 2013, 15, 29–35.

    Article  CAS  Google Scholar 

  43. Xu, K.; Li, N.; Zeng, D. W.; Tian, S. Q.; Zhang, S. S.; Hu, D.; Xie, C. S. Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 11359–11368.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y. H.; Li, X. D.; Han, X. J.; Xu, P.; Cui, L. R.; Zhao, H. H.; Liu, D. W.; Wang, F. Y.; Du, Y. C. Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 2020, 387, 124159.

    Article  CAS  Google Scholar 

  45. Han, B. H.; Chu, W. L.; Han, X. J.; Xu, P.; Liu, D. W.; Cui, L. R.; Wang, Y. H.; Zhao, H. H.; Du, Y. C. Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. Carbon 2020, 168, 404–414.

    Article  CAS  Google Scholar 

  46. Wang, F. Y.; Liu, Y. L.; Zhao, H. H.; Cui, L. R.; Gai, L. X.; Han, X. J.; Du, Y. C. Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 2022, 450, 138160.

    Article  CAS  Google Scholar 

  47. Hou, S. K.; Wang, Y.; Gao, F.; Yang, H.; Jin, F.; Ren, L.; Wu, Q.; Ge, H. L.; Wang, Y. H. A novel approach to electromagnetic wave absorbing material design: Utilizing nano-antenna arrays for efficient electromagnetic wave capture. Chem. Eng. J. 2023, 471, 144779.

    Article  CAS  Google Scholar 

  48. Xu, Z. J.; He, M.; Zhou, Y. M.; Zhang, M. Y.; Feng, S. J.; Wang, Y. J.; Xu, R.; Peng, H.; Chen, X. Rime-like carbon paper@Bi2S3 hybrid structure for efficient and broadband microwave absorption. Chem. Eng. J. 2022, 428, 131127.

    Article  CAS  Google Scholar 

  49. Wang, Y. H.; Zhang, M. H.; Deng, X. S.; Li, Z. G.; Chen, Z. S.; Shi, J. M.; Han, X. J.; Du, Y. C. Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption. Int. J. Miner., Metall. Mater. 2023, 30, 536–547.

    Article  CAS  Google Scholar 

  50. Wan, Z. D.; Ma, H. L.; Hou, S. K.; Wang, Y.; Ho, J.; Ge, H. L. Fabrication of hollow microhemisphere-like polypyrrole and carbon dielectric materials by sol-gel template method for enhanced microwave absorption. J. Mater. Sci.: Mater. Electron. 2021, 32, 10991–11003.

    CAS  Google Scholar 

  51. Yin, Y. C.; Liu, X. F.; Wei, X. J.; Yu, R. H.; Shui, J. L. Porous CNTs/Co composite derived from zeolitic imidazolate framework: A lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2016, 8, 34686–34698.

    Article  CAS  PubMed  Google Scholar 

  52. Ge, J. W.; Liu, S. M.; Liu, L.; Cui, Y.; Meng, F. D.; Li, Y. X.; Zhang, X. F.; Wang, F. H. Optimizing the electromagnetic wave absorption performance of designed hollow CoFe2O4/CoFe@C microspheres. J. Mater. Sci. Technol. 2021, 81, 190–202.

    Article  CAS  Google Scholar 

  53. Zhai, N. X.; Luo, J. H.; Xiao, M. W.; Zhang, Y. C.; Yan, W. X.; Xu, Y. In situ construction of Co@nitrogen-doped carbon/Ni nanocomposite for broadband electromagnetic wave absorption. Carbon 2023, 203, 416–425

    Article  CAS  Google Scholar 

  54. Cheng, R. R.; Wang, Y.; Di, X. C.; Lu, Z.; Wang, P.; Ma, M. L.; Ye, J. R. Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 609, 224–234.

    Article  CAS  PubMed  Google Scholar 

  55. Cheng, S. Y.; Zhang, C.; Wang, H.; Ye, J. R.; Li, Y.; Zhuang, Q.; Dong, W.; Xie, A. M. Carbon nanofilm stabilized twisty V2O3 nanorods with enhanced multiple polarization behavior for electromagnetic wave absorption application. J. Mater. Sci. Technol. 2022, 119, 37–44.

    Article  CAS  Google Scholar 

  56. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    Article  CAS  Google Scholar 

  57. Zhang, M.; Ling, H. L.; Ding, S. Q.; Xie, Y. X.; Cheng, T. T.; Zhao, L. B.; Wang, T.; Bian, H. G.; Lin, H.; Li, Z. J. et al. Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 2021, 174, 248–259.

    Article  CAS  Google Scholar 

  58. Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Zhang, X.; Shi, Y. Y.; Lu, W. Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant and thermal management functions. J. Mater. Chem. A 2021, 9, 17538–17552.

    Article  CAS  Google Scholar 

  59. Li, Z. J.; Lin, H.; Ding, S. Q.; Ling, H. L.; Wang, T.; Miao, Z. Q.; Zhang, M.; Meng, A. L.; Li, Q. D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2020, 167, 148–159.

    Article  CAS  Google Scholar 

  60. Bhattacharyya, R.; Kumar Singh, V.; Bhattacharyya, S.; Maiti, P.; Das, S. Defect reconstructions in graphene for excellent broadband absorption properties with enhanced bandwidth. Appl. Surf. Sci. 2021, 537, 147840.

    Article  CAS  Google Scholar 

  61. Quan, B.; Liang, X. H.; Ji, G. B.; Cheng, Y.; Liu, W.; Ma, J. N.; Zhang, Y. N.; Li, D. R.; Xu, G. Y. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd. 2017, 728, 1065–1075.

    Article  CAS  Google Scholar 

  62. Qiao, J.; Zhang, X.; Liu, C.; Lyu, L. F.; Yang, Y. F.; Wang, Z.; Wu, L. L.; Liu, W.; Wang, F. L.; Liu, J. R. Non- magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano- Micro Lett. 2021, 13, 75.

    Article  Google Scholar 

  63. Li, Y. L.; Gao, X. P.; Wang, M.; Gao, Y. N.; Jiang, D. L. Annealed covalent organic framework thin films for exceptional absorption of ultrabroad low-frequency electromagnetic waves. Small 2022, 18, 2205400.

    Article  CAS  Google Scholar 

  64. Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

    Article  CAS  Google Scholar 

  65. Li, Z. J.; Lin, H.; Xie, Y. X.; Zhao, L. B.; Guo, Y. Y.; Cheng, T. T.; Ling, H. L.; Meng, A. L.; Li, S. X.; Zhang, M. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 124, 182–192.

    Article  CAS  Google Scholar 

  66. Zhang, M.; Ling, H. L.; Wang, T.; Jiang, Y. J.; Song, G. Y.; Zhao, W.; Zhao, L. B.; Cheng, T. T.; Xie, Y. X.; Guo, Y. Y. et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 2022, 14, 157.

    Article  CAS  Google Scholar 

  67. Zheng, Q.; Wang, J. Q.; Yu, M. J.; Cao, W. Q.; Zhai, H. Z.; Cao, M. S. Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon 2023, 210, 118049.

    Article  CAS  Google Scholar 

  68. Wang, P.; Gai, L. X.; Hu, B.; Liu, Y. L.; Wang, F. Y.; Xu, P.; Han, X. J.; Du, Y. C. Topological MOFs deformation for the direct preparation of electromagnetic functionalized Ni/C aerogels with good hydrophobicity and thermal insulation. Carbon 2023, 212, 118132.

    Article  CAS  Google Scholar 

  69. Liu, D. W.; Du, Y. C.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; Han, X. J. MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 2020, 157, 478–485.

    Article  CAS  Google Scholar 

  70. Li, B.; Wu, N.; Yang, Y. F.; Pan, F.; Wang, C. X.; Wang, G.; Xiao, L.; Liu, W.; Liu, J. R.; Zeng, Z. H. Graphene oxide-assisted multiple cross-linking of mxene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 2023, 33, 2213357.

    Article  CAS  Google Scholar 

  71. Chen, T. Y.; Jiang, S.; Li, L. L.; Qian, K.; Sun, J.; Guo, W. W.; Cai, X. D.; Yu, K. J. Vertically aligned MnO2 nanostructures on carbon fibers with tunable electromagnetic wave absorption performance. Appl. Surf. Sci. 2022, 589, 152858.

    Article  CAS  Google Scholar 

  72. Pan, F.; Cai, L.; Dong, Y. Y.; Zhu, X. J.; Shi, Y. Y.; Lu, W. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 101, 85–94.

    Article  CAS  Google Scholar 

  73. Luo, J. H.; Yan, W. X.; Li, X. P.; Shu, P. C.; Mei, J.; Shi, Y. F. Carbon nanotubes decorated FeNi/nitrogen-doped carbon composites for lightweight and broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 207–217.

    Article  CAS  Google Scholar 

  74. Luo, J. H.; Li, X. P.; Yan, W. X.; Shu, P. C.; Mei, J. RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption. Carbon 2023, 205, 552–561.

    Article  CAS  Google Scholar 

  75. Wu, N.; Li, B.; Pan, F.; Zhang, R. N.; Liu, J. R.; Zeng, Z. H. Ultrafine cellulose nanocrystal-reinforced MXene biomimetic composites for multifunctional electromagnetic interference shielding. Sci. China Mater. 2023, 66, 1597–1606.

    Article  CAS  Google Scholar 

  76. Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

    Article  CAS  Google Scholar 

  77. Y. Y.; Zhang, M.; Cheng, T. T.; Xie, Y. X.; Zhao, L. B.; Jiang, L.; Zhao, W. X.; Yuan, L. Y.; Meng, A. L.; Zhang, J. et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. NanoRes. 2023, 16, 9591–9601.

    Google Scholar 

  78. Zhang, X.; Tian, X. L.; Qin, Y. T.; Qiao, J.; Pan, F.; Wu, N.; Wang, C. X.; Zhao, S. Y.; Liu, W.; Cui, J. et al. Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 2023, 17, 12510–12518.

    Article  CAS  PubMed  Google Scholar 

  79. Wu, N.; Yang, Y. F.; Wang, C. X.; Wu, Q. L.; Pan, F.; Zhang, R. N.; Liu, J. R.; Zeng, Z. H. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 2023, 35, 2207969.

    Article  CAS  Google Scholar 

  80. Liang, H. S.; Chen, G.; Liu, D.; Li, Z. J.; Hui, S. C.; Yun, J. J.; Zhang, L. M.; Wu, H. L. Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 2023, 33, 2212604.

    Article  CAS  Google Scholar 

  81. Li, B.; Yang, Y. F.; Wu, N.; Zhao, S. Y.; Jin, H.; Wang, G. L.; Li, X. Y.; Liu, W.; Liu, J. R.; Zeng, Z. H. Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 2022, 16, 19293–19304.

    Article  CAS  PubMed  Google Scholar 

  82. Li, B.; Wu, N.; Wu, Q. L.; Yang, Y. F.; Pan, F.; Liu, W.; Liu, J. R.; Zeng, Z. H. Foom “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional e-textiles in extreme environments. Adv. Funct. Mater. 2023, 33, 2307301.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. W. Z. from Beijing institute of aeronautical materials for RCS simulation. The authors thank Z. Q. L. from Shiyanjia lab (www.shiyanjia.com) for the support of SEM. This work was supported by Zhejiang Provincial Natural Science Foundation of China (Nos. LQ23F050006 and LQ21E020005) and the National Natural Science Foundation of China (No. 52002365).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Wang, Feng Gao or Hua Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, S., Wang, Y., Gao, F. et al. Biomimetic leaf structures for ultra-thin electromagnetic wave absorption. Nano Res. 17, 4507–4516 (2024). https://doi.org/10.1007/s12274-023-6305-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6305-7

Keywords

Navigation