Skip to main content
Log in

Self-shrinking supramolecular nanoparticles syndicate energy suppression and NIR-II mild photothermal amplification of mitochondrial oxidative stress for breast cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photothermal therapy (PTT) may lead to healthy tissue damage, tumor metastasis, and recurrence, which makes mild photothermal therapy (mild PTT) stand out. However, overcoming heat resistance, insufficient therapeutic effect, and poor photothermal conversion efficiency has become new challenge. Herein, we report a dynamic supramolecular nanocarrier formed from amide-sericin and aldehyde-polyhydroxy glucan (denoted as SDA), the loose cavity of which can be filled by using the pharmaceutical combination of lonidamine (LND) and NIR-II photothermal agent of IR-1061, producing SDLI with a tighter inner hole, smaller and uniform particle size and excellent stability due to multiple pulling forces. Moreover, the intricate internal network structure prevents the hydrophobic IR-1061 from forming aggregates in the small cavity, and the photothermal conversion efficiency (PCE) can reach 48.9%. At the acidic tumor microenvironment of pH 6.5, the controlled release of LND can solve the problem of heat resistance of NIR-II mild PTT and significantly improve the therapeutic effect of NIR-II mild PTT. Meanwhile, SDLI also shows a reasonable tumor inhibition rate, so the synergistic strategy of inhibiting tumor energy metabolism and NIR-II mild PTT to magnify mitochondrial oxidative stress, continuous cell stress state-induced immunogenic cell death to promote the induction of tumor apoptosis is proposed to achieve more effective cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, S.; Pan, X. T.; Liu, H. Y. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem., Int. Ed. 2020, 59, 5890–5900.

    Article  CAS  Google Scholar 

  2. Xiong, Y. X.; Wang, W.; Deng, Q. Y.; Zhang, Z. J.; Wang, Q.; Yong, Z. T.; Sun, C. Y.; Yang, X. Y.; Li, Z. L. Mild photothermal therapy boosts nanomedicine antitumor efficacy by disrupting DNA damage repair pathways and modulating tumor mechanics. Nano Today 2023, 49, 101767.

    Article  CAS  Google Scholar 

  3. Chang, M. Y.; Hou, Z. Y.; Wang, M.; Li, C. X.; Lin, J. Recent advances in hyperthermia therapy-based synergistic immunotherapy. Adv. Mater. 2021, 33, 2004788.

    Article  CAS  Google Scholar 

  4. Yu, Q.; Zhou, J.; Song, J.; Zhou, H.; Kang, B.; Chen, H. Y.; Xu, J. J. A cascade nanoreactor of metal-protein-polyphenol capsule for oxygen-mediated synergistic tumor starvation and chemodynamic therapy. Small 2023, 19, 2206592.

    Article  CAS  Google Scholar 

  5. Zhu, Y. J.; Li, Q. G.; Wang, C. J.; Hao, Y.; Yang, N. L.; Chen, M. J.; Ji, J. S.; Feng, L. Z.; Liu, Z. Rational design of biomaterials to potentiate cancer thermal therapy. Chem. Rev. 2023, 123, 7326–7378.

    Article  CAS  PubMed  Google Scholar 

  6. He, S. Q.; Song, J.; Qu, J. L.; Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: Design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 2018, 47, 4258–4278.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, Y. Y.; Huang, J. G.; Xu, C.; Pu, K. Y. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat. Commun. 2021, 12, 742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, Y. Y.; Zhao, X. H.; Huang, J. G.; Li, J. C.; Upputuri, P. K.; Sun, H.; Han, X.; Pramanik, M.; Miao, Y. S.; Duan, H. W. et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 2020, 11, 1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu, C.; Pu, K. Y. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 2021, 50, 1111–1137.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, K.; Zhao, S. J.; Li, B. L.; Wang, B. H.; Lan, M. H.; Song, X. Z. Low temperature photothermal therapy: Advances and perspectives. Coord. Chem. Rev. 2022, 454, 214330.

    Article  CAS  Google Scholar 

  11. Huang, L. P.; Li, Y. A.; Du, Y. A.; Zhang, Y. Y.; Wang, X. X.; Ding, Y.; Yang, X. L.; Meng, F. L.; Tu, J. S.; Luo, L. et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 2019, 10, 4871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, Z.; Gao, D.; Zhao, J.; Yang, G. J.; Guo, M.; Wang, Y.; Ren, X. C.; Kim, J. S.; Jin, L.; Tian, Z. M. et al. Thermal immunonanomedicine in cancer. Nat. Rev. Clin. Oncol. 2023, 20, 116–134.

    Article  PubMed  Google Scholar 

  13. Li, Z. T.; Wang, Y. X.; Ding, Y. Y.; Repp, L.; Kwon, G. S.; Hu, Q. Y. Cell-based delivery systems: Emerging carriers for immunotherapy. Adv. Funct. Mater. 2021, 31, 2100088.

    Article  CAS  Google Scholar 

  14. Chen, W. H.; Luo, G. F.; Lei, Q.; Hong, S.; Qiu, W. X.; Liu, L. H.; Cheng, S. X.; Zhang, X. Z. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano 2017, 11, 1419–1431.

    Article  CAS  PubMed  Google Scholar 

  15. Zeng, W. N.; Yu, Q. P.; Wang, D.; Liu, J. L.; Yang, Q. J.; Zhou, Z. K.; Zeng, Y. P. Mitochondria- targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J. Nanobiotechnol. 2021, 19, 79.

    Article  CAS  Google Scholar 

  16. Qi, C.; Liu, J.; Jin, Y.; Xu, L. M.; Wang, G. B.; Wang, Z.; Wang, L. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials 2018, 163, 89–104.

    Article  CAS  PubMed  Google Scholar 

  17. Chang, M. Y.; Hou, Z. Y.; Wang, M.; Wen, D.; Li, C. X.; Liu, Y. H.; Zhao, Y. L.; Lin, J. Cu single atom nanozyme based high-efficiency mild photothermal therapy through cellular metabolic regulation. Angew. Chem., Int. Ed. 2022, 61, e202209245.

    Article  CAS  Google Scholar 

  18. Guo, X. L.; Yang, N. D.; Ji, W. H.; Zhang, H.; Dong, X.; Zhou, Z. Q.; Li, L.; Shen, H. M.; Yao, S. Q.; Huang, W. Mito-Bomb: Targeting mitochondria for cancer therapy. Adv. Mater. 2021, 33, 2007778.

    Article  CAS  Google Scholar 

  19. Guo, R. R.; Peng, H. B.; Tian, Y.; Shen, S.; Yang, W. L. Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small 2016, 12, 4541–4552.

    Article  CAS  PubMed  Google Scholar 

  20. Yang, G. B.; Xu, L. G.; Xu, J.; Zhang, R.; Song, G. S.; Chao, Y.; Feng, L. Z.; Han, F. X.; Dong, Z. L.; Li, B. et al. Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 2018, 18, 2475–2484.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, X.; Du, J. F.; Guo, Z.; Yu, J.; Gao, Q.; Yin, W. Y.; Zhu, S.; Gu, Z. J.; Zhao, Y. L. Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy. Adv. Sci. (Weinh.) 2019, 6, 1801122.

    PubMed  Google Scholar 

  22. Cheng, G.; Zhang, Q.; Pan, J.; Lee, Y.; Ouari, O.; Hardy, M.; Zielonka, M.; Myers, C. R.; Zielonka, J.; Weh, K. et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat. Commun. 2019, 10, 2205.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cohen-Erez, I.; Issacson, C.; Lavi, Y.; Shaco-Levy, R.; Milam, J.; Laster, B.; Gheber, L. A.; Rapaport, H. Antitumor effect of lonidamine-polypeptide-peptide nanoparticles in breast cancer models. ACS Appl. Mater. Interfaces 2019, 11, 32670–32678.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, J. Y.; Ren, F. Z.; Cao, W. F.; Wu, Z. J.; Ju, G. Q.; Xiao, C. W.; Wu, W. J.; Gao, S.; Xu, C. L.; Gao, Y. Photothermal therapy enhance the anti-mitochondrial metabolism effect of lonidamine to renal cell carcinoma in homologous-targeted nanosystem. Nanomedicine 2021, 34, 102370.

    Article  CAS  PubMed  Google Scholar 

  25. Nath, K.; Guo, L. L.; Nancolas, B.; Nelson, D. S.; Shestov, A. A.; Lee, S. C.; Roman, J.; Zhou, R.; Leeper, D. B.; Halestrap, A. P. et al. Mechanism of antineoplastic activity of lonidamine. Biochim. Biophys. Acta 2016, 1866, 151–162.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wan, J.; Zhang, X. H.; Li, Z. H.; Mo, F. H.; Tang, D. S.; Xiao, H. H.; Wang, J. C.; Rong, G. H.; Liu, T. Oxidative stress amplifiers as immunogenic cell death nanoinducers disrupting mitochondrial redox homeostasis for cancer immunotherapy. Adv. Healthc. Mater. 2023, 12, 2202710.

    Article  CAS  Google Scholar 

  27. Ding, Y. Y.; Wang, Y. X.; Hu, Q. Y. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. Exploration 2022, 2, 20210106.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhu, Q. W.; Saeed, M.; Song, R. D.; Sun, T.; Jiang, C.; Yu, H. J. Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. Chin. Chem. Lett. 2020, 31, 1051–1059.

    Article  CAS  Google Scholar 

  29. Han, J. P.; Sheng, T.; Zhang, Y. Q.; Cheng, H.; Gao, J. Q.; Yu, J. C.; Gu, Z. Bioresponsive immunotherapeutic materials. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202209778.

  30. Juengpanich, S.; Li, S. J.; Yang, T. R.; Xie, T. A.; Chen, J. D.; Shan, Y. K.; Lee, J.; Lu, Z. Y.; Chen, T. E.; Zhang, B. et al. Pre-activated nanoparticles with persistent luminescence for deep tumor photodynamic therapy in gallbladder cancer. Nat. Commun. 2023, 14, 5699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Q. X.; Liu, X.; Yan, C. M.; Zhao, B. L.; Zhao, Y. X.; Yang, L.; Shi, M. Y.; Yu, H.; Li, X. F.; Luo, K. P. Polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy. Small 2023, 19, 2206211.

    Article  CAS  Google Scholar 

  32. Su, L.; Feng, Y. L.; Wei, K. C.; Xu, X. Y.; Liu, R. Y.; Chen, G. S. Carbohydrate-based macromolecular biomaterials. Chem. Rev. 2021, 121, 10950–11029.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, K. K.; Yang, Z. Q.; Yu, G. C.; Nie, Z. H.; Wang, R. B.; Chen, X. Y. Polyprodrug nanomedicines: An emerging paradigm for cancer therapy. Adv. Mater. 2022, 34, 2107434.

    Article  CAS  Google Scholar 

  34. Zhao, L. Y.; Liu, Y. M.; Chang, R.; Xing, R. R.; Yan, X. H. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy. Adv. Funct. Mater. 2019, 29, 1806877.

    Article  Google Scholar 

  35. Webber, M. J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 2017, 46, 6600–6620.

    Article  CAS  PubMed  Google Scholar 

  36. Su, J. Y.; Li, W. H.; Li, Y. M. New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chem. Soc. Rev. 2022, 51, 7944–7970.

    Article  CAS  PubMed  Google Scholar 

  37. Xie, H. J.; Yang, W.; Chen, J. H.; Zhang, J. X.; Lu, X. C.; Zhao, X. B.; Huang, K.; Li, H. L.; Chang, P. P.; Wang, Z. et al. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve. Adv. Healthc. Mater. 2015, 4, 2195–2205.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, Y.; Hyun, J. Y.; Shin, I. Multivalent glycans for biological and biomedical applications. Chem. Soc. Rev. 2021, 50, 10567–10593.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, X.; Xu, X. H.; Li, Y. C.; Hu, C.; Zhang, Z. J.; Gu, Z. W. Virion-like membrane-breaking nanoparticles with tumor-activated cell-and-tissue dual-penetration conquer impermeable cancer. Adv. Mater. 2018, 30, 1707240.

    Article  Google Scholar 

  40. Jiang, Y. Y.; Upputuri, P. K.; Xie, C.; Zeng, Z. L.; Sharma, A.; Zhen, X.; Li, J. C.; Huang, J. G.; Pramanik, M.; Pu, K. Y. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 2019, 31, 1808166.

    Article  Google Scholar 

  41. Zhou, J. J.; Jiang, Y. Y.; Hou, S.; Upputuri, P. K.; Wu, D.; Li, J. C.; Wang, P.; Zhen, X.; Pramanik, M.; Pu, K. Y. et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano 2018, 12, 2643–2651.

    Article  CAS  PubMed  Google Scholar 

  42. Ma, X. B.; Yang, S. C.; Zhang, T.; Wang, S.; Yang, Q. C.; Xiao, Y.; Shi, X. X.; Xue, P.; Kang, Y. J.; Liu, G. et al. Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharm. Sin. B 2022, 12, 451–466.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, P. C.; Xia, X. F.; Xu, X. Y.; Leung, K. K. C.; Rai, A.; Deng, Y. R.; Yang, B. G.; Lai, H. S.; Peng, X.; Shi, P. et al. Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat. Commun. 2021, 12, 7162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yin, N.; Zhang, Z. M.; Ge, Y. Z.; Zhao, Y. Z.; Gu, Z. C.; Yang, Y.; Mao, L.; Wei, Z. Y.; Liu, J. J.; Shi, J. J. et al. Polydopamine-based nanomedicines for efficient antiviral and secondary injury protection therapy. Sci. Adv. 2023, 9, eadf4098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhong, Z. T.; Jia, L. Room temperature preparation of water-soluble polydopamine-polyethyleneimine copolymer dots for selective detection of copper ions. Talanta 2019, 197, 584–591.

    Article  CAS  PubMed  Google Scholar 

  46. Yu, H. L.; Wang, Y. S.; Chen, Y.; Ji, M. Rational design of a NIR-II fluorescent nanosystem with maximized fluorescence performance and applications. Mater. Adv. 2021, 2, 6058–6067.

    Article  CAS  Google Scholar 

  47. Jia, W. F.; Wang, Y. S.; Liu, R.; Yu, X. R.; Gao, H. L. Shape transformable strategies for drug delivery. Adv. Funct. Mater. 2021, 31, 2009765.

    Article  CAS  Google Scholar 

  48. Xie, R.; Wang, Y. F.; Tong, F.; Yang, W. Q.; Lei, T.; Du, Y. F.; Wang, X. R.; Yang, Z. X.; Gong, T.; Shevtsov, M. et al. Hsp70-targeting and size-tunable nanoparticles combine with PD-1 checkpoint blockade to treat glioma. Small 2023, 19, 2300570.

    Article  CAS  Google Scholar 

  49. Yu, W. Q.; Liu, R.; Zhou, Y.; Gao, H. L. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 2020, 6, 100–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng, M.; Liu, Y. Y.; Wang, Y. B.; Zhang, D. Y.; Zou, Y.; Ruan, W. M.; Yin, J. L.; Tao, W.; Park, J. B.; Shi, B. Y. ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv. Mater. 2019, 31, 1903277.

    Article  Google Scholar 

  51. Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

    Article  PubMed  Google Scholar 

  52. Cai, W.; Fan, G. H.; Zhou, H.; Chen, L.; Ge, J. X.; Huang, B. X.; Zhou, D. D.; Zeng, J. F.; Miao, Q. Q.; Hu, C. H. Self-assembled hybrid nanocomposites for multimodal imaging-guided photothermal therapy of lymph node metastasis. ACS Appl. Mater. Interfaces 2020, 12, 49407–49415.

    Article  CAS  PubMed  Google Scholar 

  53. Qi, X. L.; Huang, Y. J.; You, S. Y.; Xiang, Y. J.; Cai, E. Y.; Mao, R. T.; Pan, W. H.; Tong, X. Q.; Dong, W.; Ye, F. F. et al. Engineering robust Ag-decorated polydopamine nano-photothermal platforms to combat bacterial infection and prompt wound healing. Adv. Sci. (Weinh.) 2022, 9, 2106015.

    CAS  PubMed  Google Scholar 

  54. Sun, Z. H.; Deng, G. J.; Peng, X. H.; Xu, X. L.; Liu, L. L.; Peng, J. F.; Ma, Y. F.; Zhang, P. F.; Wen, A.; Wang, Y. F. et al. Intelligent photothermal dendritic cells restart the cancer immunity cycle through enhanced immunogenic cell death. Biomaterials 2021, 279, 121228.

    Article  CAS  PubMed  Google Scholar 

  55. Xu, J. M.; Qiu, W.; Liang, M. Y.; Ye, M. J.; Hu, J. F.; Ma, X. B.; Shi, X. X.; Xue, P.; Kang, Y. J.; Xiao, B. et al. Dual-stimulus phototherapeutic nanogel for triggering pyroptosis to promote cancer immunotherapy. J. Control. Release 2023, 358, 219–231.

    Article  CAS  PubMed  Google Scholar 

  56. Wu, W. W.; Yang, Y.; Liang, Z. Y.; Song, X. L.; Huang, Y. D.; Qiu, L.; Qiu, X. Z.; Yu, S. M.; Xue, W. Near infrared II laser controlled free radical releasing nanogenerator for synergistic nitric oxide and alkyl radical therapy of breast cancer. Nanoscale 2021, 13, 11169–11187.

    Article  CAS  PubMed  Google Scholar 

  57. Chen, Q. S.; Chen, J. Q.; He, M.; Bai, Y. Y.; Yan, H. X.; Zeng, N.; Liu, F. Y.; Wen, S.; Song, L.; Sheng, Z. H. et al. Novel small molecular dye-loaded lipid nanoparticles with efficient near-infrared-II absorption for photoacoustic imaging and photothermal therapy of hepatocellular carcinoma. Biomater. Sci. 2019, 7, 3165–3177.

    Article  CAS  PubMed  Google Scholar 

  58. Liu, X.; Yang, Y. Y.; Ling, M. J.; Sun, R.; Zhu, M. Y.; Chen, J. J.; Yu, M.; Peng, Z. W.; Yu, Z. Q.; Liu, X. Q. Near- infrared II light-triggered robust carbon radical generation for combined photothermal and thermodynamic therapy of hypoxic tumors. Adv. Funct. Mater. 2021, 31, 2101709.

    Article  CAS  Google Scholar 

  59. Mandal, B. B.; Priya, A. S.; Kundu, S. C. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: Fabrication and characterization for potential tissue engineering applications. Acta Biomater. 2009, 5, 3007–3020.

    Article  CAS  PubMed  Google Scholar 

  60. Liu, J.; Deng, Y.; Fu, D. A.; Yuan, Y.; Li, Q. L.; Shi, L.; Wang, G. B.; Wang, Z.; Wang, L. Sericin microparticles enveloped with metal-organic networks as a pulmonary targeting delivery system for intra-tracheally treating metastatic lung cancer. Bioact. Mater. 2021, 6, 273–284.

    CAS  PubMed  Google Scholar 

  61. Zhang, W. J.; Hu, X. L.; Shen, Q.; Xing, D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat. Commun. 2019, 10, 1704.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen, C.; Ni, X.; Jia, S. R.; Liang, Y.; Wu, X. L.; Kong, D. L.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 2019, 31, 1904914.

    Article  CAS  Google Scholar 

  63. Jiang, H.; Fu, H.; Guo, Y. D.; Hu, P.; Shi, J. L. Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy. Biomaterials 2022, 289, 121799.

    Article  CAS  PubMed  Google Scholar 

  64. Jin, J. K.; Yuan, P. C.; Yu, W.; Lin, J.; Xu, A. K.; Xu, X. D.; Lou, J. A.; Yu, T.; Qian, C.; Liu, B. et al. Mitochondria- targeting polymer micelle of dichloroacetate induced pyroptosis to enhance osteosarcoma immunotherapy. ACS Nano 2022, 16, 10327–10340.

    Article  CAS  PubMed  Google Scholar 

  65. Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huo, D.; Zhu, J. F.; Chen, G. J.; Chen, Q.; Zhang, C.; Luo, X. Y.; Jiang, W.; Jiang, X. Q.; Gu, Z.; Hu, Y. Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nat. Commun. 2019, 10, 3051.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nam, J.; Son, S.; Ochyl, L. J.; Kuai, R.; Schwendeman, A.; Moon, J. J. Chemo- photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (No. 22375168), Chongqing Talents of Exceptional Young Talents Project, China (Nos. CQYC202005029 and cstc2021ycjh-bgzxm0061), Shuangcheng cooperative agreement research grant of Yibin, China (No. XNDX2022020013) and the Innovation Platform for Academicians of Hainan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Xu.

Electronic Supplementary Material

12274_2023_6296_MOESM1_ESM.pdf

Self-shrinking supramolecular nanoparticles syndicate energy suppression and NIR-II mild photothermal amplification of mitochondrial oxidative stress for breast cancer therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xu, J., Ye, M. et al. Self-shrinking supramolecular nanoparticles syndicate energy suppression and NIR-II mild photothermal amplification of mitochondrial oxidative stress for breast cancer therapy. Nano Res. 17, 4314–4328 (2024). https://doi.org/10.1007/s12274-023-6296-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6296-4

Keywords

Navigation