Skip to main content
Log in

Advancing sustainable agriculture: Enhancing crop nutrition with next-generation nanotech-based fertilizers

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The pressing need to enhance nutrient use efficiency (NUE) in fertilizers has become increasingly urgent in light of food insecurity and climate-related issues. Nanotechnology offers promising prospects for the development of effective and environmentally friendly alternatives in the field of fertilization. This review focuses on the impact of nanotechnology on conventional fertilizers, encompassing inorganic, organic, and microbial approaches. We emphasize the superior attributes of nano-fertilizers compared with their conventional counterparts and explore their potential and versatility in boosting crop productivity, reducing fertilizer expenses, and mitigating detrimental environmental impacts. In conclusion, given the significant challenges posed by food insecurity and climate change, the application of nano-fertilizers demonstrates immense potential for advancing sustainable and intelligent agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mueller, N. D.; Gerber, J. S.; Johnston, M.; Ray, D. K.; Ramankutty, N.; Foley, J. A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257.

    CAS  Google Scholar 

  2. FAO. FAO statistical databases [Online]. http://faostat.fao.org/ (accessed Jul 7, 2023).

  3. Kopittke, P. M.; Lombi, E.; Wang, P.; Schjoerring, J. K.; Husted, S. Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ. Sci.: Nano 2019, 6, 3513–3524.

    CAS  Google Scholar 

  4. Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N. A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270.

    CAS  Google Scholar 

  5. Lam, S. K.; Wille, U.; Hu, H. W.; Caruso, F.; Mumford, K.; Liang, X.; Pan, B. B.; Malcolm, B.; Roessner, U.; Suter, H. et al. Next-generation enhanced-efficiency fertilizers for sustained food security. Nat. Food 2022, 3, 575–580.

    Google Scholar 

  6. Sarkar, D.; Baishya, L. K. Nutrient use efficiency. In Essential Plant Nutrients: Uptake, Use Efficiency, and Management. Naeem, M.; Ansari, A. A.; Gill, S. S., Eds.; Springer International Publishing: Cham, 2017; pp 119–146.

    Google Scholar 

  7. Zhang, Q.; Ying, Y. B.; Ping, J. F. Recent advances in plant nanoscience. Adv. Sci. (Weinh.) 2022, 9, 2103414.

    CAS  Google Scholar 

  8. DeRosa, M. C.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010, 5, 91.

    CAS  Google Scholar 

  9. Hu, J.; Xianyu, Y. L. When Nano meets plants: A review on the interplay between nanoparticles and plants. Nano Today 2021, 38, 101143.

    CAS  Google Scholar 

  10. Lu, K.; Shen, D. L.; Dong, S. P.; Chen, C. Y.; Lin, S. J.; Lu, S.; Xing, B. S.; Mao, L. Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Res. 2020, 13, 3198–3205.

    CAS  Google Scholar 

  11. Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F. N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209.

    CAS  Google Scholar 

  12. Halpern, B. S.; Frazier, M.; Verstaen, J.; Rayner, P. E.; Clawson, G.; Blanchard, J. L.; Cottrell, R. S.; Froehlich, H. E.; Gephart, J. A.; Jacobsen, N. S. et al. The environmental footprint of global food production. Nat. Sustain. 2022, 5, 1027–1039.

    Google Scholar 

  13. Net-zero carbon pledges must be meaningful to avert climate disaster. Nature 2021, 592, 8.

  14. Sharma, B.; Shrivastava, M.; Afonso, L. O. B.; Soni, U.; Cahill, D. M. Metal doped nitrogenous hydroxyapatite nanohybrids slowly release nitrogen to crops and mitigate ammonia volatilization: An impact assessment. NanoImpact 2022, 28, 100424.

    CAS  Google Scholar 

  15. Avila-Quezada, G. D.; Ingle, A. P.; Golińska, P.; Rai, M. Strategic applications of nano-fertilizers for sustainable agriculture: Benefits and bottlenecks. Nanotechnol. Rev. 2022, 11, 2123–2140.

    CAS  Google Scholar 

  16. Jakhar, A. M.; Aziz, I.; Kaleri, A. R.; Hasnain, M.; Haider, G.; Ma, J. H.; Abideen, Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact 2022, 27, 100411.

    CAS  Google Scholar 

  17. Zhao, L. J.; Lu, L.; Wang, A. D.; Zhang, H. L.; Huang, M.; Wu, H. H.; Xing, B. S.; Wang, Z. Y.; Ji, R. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947.

    CAS  Google Scholar 

  18. Jha, A.; Pathania, D.; Sonu; Damathia, B.; Raizada, P.; Rustagi, S.; Singh, P.; Rani, G. M.; Chaudhary, V. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. Environ. Res. 2023, 235, 116456.

    CAS  Google Scholar 

  19. Behera, K. K.; Alam, A.; Vats, S.; Sharma, H. P.; Sharma, V. Organic farming history and techniques. In Agroecology and Strategies for Climate Change. Lichtfouse, E., Ed.; Springer: Dordrecht, 2012.

    Google Scholar 

  20. Ludemann, C. I.; Gruere, A.; Heffer, P.; Dobermann, A. Global data on fertilizer use by crop and by country. Sci. Data 2022, 9, 501.

    Google Scholar 

  21. United States Department of Agriculture (USDA). Report and recommendations on organic farming. Department of Agriculture, US, Government Priting Office, Washington DC, 1980.

    Google Scholar 

  22. Tilman, D.; Cassman, K. G.; Matson, P. A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677.

    CAS  Google Scholar 

  23. Joshi, S. K.; Gauraha, A. K. Global biofertilizer market: Emerging trends and opportunities. In Trends of Applied Microbiology for Sustainable Economy: A volume in Developments in Applied Microbiology and Biotechnology. Soni, R.; Suyal, D. C.; Yadav, A. N.; Goel, R., Eds.; Elsevier: Amsterdam, 2022; pp 689–697.

    Google Scholar 

  24. Xiang, T.; Malik, T. H.; Nielsen, K. The impact of population pressure on global fertiliser use intensity, 1970–2011: An analysis of policy-induced mediation. Technol. Forecast. Soc. Change 2020, 152, 119895.

    Google Scholar 

  25. FAO. Inorganic fertilizers 1961–2019. FAOSTAT Analytical Brief 27. Rome: FAO US, 2021.

    Google Scholar 

  26. Kahiluoto, H.; Pickett, K. E.; Steffen, W. Global nutrient equity for people and the planet. Nat. Food 2021, 2, 857–861.

    Google Scholar 

  27. Reid, T. E.; Kavamura, V. N.; Abadie, M.; Torres-Ballesteros, A.; Pawlett, M.; Clark, I. M.; Harris, J.; Mauchline, T. H. Inorganic chemical fertilizer application to wheat reduces the abundance of putative plant growth-promoting rhizobacteria. Front. Microbiol. 2021, 12, 642587.

    Google Scholar 

  28. Liu, Y. H.; Chu, G.; Stirling, E.; Zhang, H. Q.; Chen, S.; Xu, C. M.; Zhang, X. F.; Ge, T. D.; Wang, D. Y. Nitrogen fertilization modulates rice seed endophytic microbiomes and grain quality. Sci. Total Environ. 2023, 857, 159181.

    CAS  Google Scholar 

  29. Husted, S.; Minutello, F.; Pinna, A.; Tougaard, S. L.; Møs, P.; Kopittke, P. M. What is missing to advance foliar fertilization using nanotechnology. Trends Plant Sci. 2023, 28, 90–105.

    CAS  Google Scholar 

  30. Fernandez, V.; Sotiropoulos, T.; Brown, P. Foliar Fertilization: Scientific Principles and Field Practices; IFA: Paris, France, 2013.

    Google Scholar 

  31. Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled release fertilizer: A review on developments, applications and potential in agriculture. J. Control. Release 2021, 339, 321–334.

    CAS  Google Scholar 

  32. Naz, M. Y.; Sulaiman, S. A. Slow release coating remedy for nitrogen loss from conventional urea: A review. J. Control. Release 2016, 225, 109–120.

    CAS  Google Scholar 

  33. Xie, J. Z.; Yang, Y. C.; Gao, B.; Wan, Y. S.; Li, Y. C.; Cheng, D. D.; Xiao, T. Q.; Li, K.; Fu, Y. N.; Xu, J. et al. Magnetic-sensitive nanoparticle self-assembled superhydrophobic biopolymer-coated slow-release fertilizer: Fabrication, enhanced performance, and mechanism. ACS Nano 2019, 13, 3320–3333.

    CAS  Google Scholar 

  34. Tilman, D.; Socolow, R.; Foley, J. A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C. et al. Beneficial biofuels-the food, energy, and environment trilemma. Science 2009, 325, 270–271.

    CAS  Google Scholar 

  35. Jing, J. Y.; Cong, W. F.; Bezemer, T. M. Legacies at work: Plant-soil-microbiome interactions underpinning agricultural sustainability. Trends Plant Sci. 2022, 27, 781–792.

    CAS  Google Scholar 

  36. Shaji, H.; Chandran, V.; Mathew, L. Organic fertilizers as a route to controlled release of nutrients. In Controlled Release Fertilizers for Sustainable Agriculture. Lewu, F. B.; Volova, T.; Thomas, S.; Rakhimol, K. R., Eds.; Elsevier: Amsterdam, 2021; pp 231–245.

    Google Scholar 

  37. Xie, S. W.; Yang, F.; Feng, H. X.; Yu, Z. Z.; Liu, C. S.; Wei, C. Y.; Liang, T. Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations. Sci. Total Environ. 2021, 762, 143059.

    CAS  Google Scholar 

  38. Chen, Q. L.; Cui, H. L.; Su, J. Q.; Penuelas, J.; Zhu, Y. G. Antibiotic resistomes in plant microbiomes. Trends Plant Sci. 2019, 24, 530–541.

    CAS  Google Scholar 

  39. Xia, L. L.; Cao, L.; Yang, Y.; Ti, C.; Liu, Y. Z.; Smith, P.; van Groenigen, K. J.; Lehmann, J.; Lal, R.; Butterbach-Bahl, K. et al. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nat. Food 2023, 4, 236–246.

    CAS  Google Scholar 

  40. Jack, C. N.; Petipas, R. H.; Cheeke, T. E.; Rowland, J. L.; Friesen, M. L. Microbial Inoculants: Silver Bullet or Microbial Jurassic Park. Trends Microbiol. 2021, 29, 299–308.

    CAS  Google Scholar 

  41. Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18.

    Google Scholar 

  42. Waqas, M.; Hawkesford, M. J.; Geilfus, C. M. Feeding the world sustainably: Efficient nitrogen use. Trends Plant Sci. 2023, 28, 505–508.

    CAS  Google Scholar 

  43. Batista, B. D.; Singh, B. K. Realities and hopes in the application of microbial tools in agriculture. Microb. Biotechnol. 2021, 14, 1258–1268.

    Google Scholar 

  44. Chen, J.; Lü, S. Y.; Zhang, Z.; Zhao, X. X.; Li, X. M.; Ning, P.; Liu, M. Z. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 2018, 613–614, 829–839.

    Google Scholar 

  45. Zhao, L. J.; Bai, T. H.; Wei, H.; Gardea-Torresdey, J. L.; Keller, A.; White, J. C. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 2022, 3, 829–836.

    Google Scholar 

  46. Kah, M.; Kookana, R. S.; Gogos, A.; Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018, 13, 677–684.

    CAS  Google Scholar 

  47. Wang, P.; Lombi, E.; Zhao, F. J.; Kopittke, P. M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016, 21, 699–712.

    CAS  Google Scholar 

  48. Li, W. C.; Fan, R. Y.; Zhou, H. J.; Zhu, Y. F.; Zheng, X.; Tang, M. Y.; Wu, X. S.; Yu, C. Z.; Wang, G. Z. Improving the utilization rate of foliar nitrogen fertilizers by surface roughness engineering of silica spheres. Environ. Sci.: Nano 2020, 7, 3526–3535.

    CAS  Google Scholar 

  49. Vishekaii, Z. R.; Soleimani, A.; Fallahi, E.; Ghasemnezhad, M.; Hasani, A. The impact of foliar application of boron nano-chelated fertilizer and boric acid on fruit yield, oil content, and quality attributes in olive (Olea europaea L.). Sci. Horti. 2019, 257, 108689.

    CAS  Google Scholar 

  50. Wu, H. H.; Tito, N.; Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 2017, 11, 11283–11297.

    CAS  Google Scholar 

  51. Dong, S. P.; Jing, X.; Lin, S. J.; Lu, K.; Li, W. F.; Lu, J. J.; Li, M. Z.; Gao, S. X.; Lu, S.; Zhou, D. M. et al. Root hair apex is the key site for symplastic delivery of graphene into plants. Environ. Sci. Technol. 2022, 56, 12179–12189.

    CAS  Google Scholar 

  52. Rane, A. V.; Kanny, K.; Abitha, V. K.; Thomas, S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. In Synthesis of Inorganic Nanomaterials: Advances and Key Technologies: A volume in Micro and Nano Technologies. Bhagyaraj, S. M.; Oluwafemi, O. S.; Kalarikkal, N.; Thomas, S., Eds.; 2018; Elsevier: Amsterdam, pp 121–139.

    Google Scholar 

  53. Selmani, A.; Kovačević, D.; Bohinc, K. Nanoparticles: From synthesis to applications and beyond. Adv. Colloid Interface Sci. 2022, 303, 102640.

    CAS  Google Scholar 

  54. Gilbertson, L. M.; Pourzahedi, L.; Laughton, S.; Gao, X. Y.; Zimmerman, J. B.; Theis, T. L.; Westerhoff, P.; Lowry, G. V. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 2020, 15, 801–810.

    CAS  Google Scholar 

  55. Elmer, W. H.; White, J. C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci.: Nano 2016, 3, 1072–1079.

    CAS  Google Scholar 

  56. Li, M. S.; Zhang, P.; Guo, Z. L.; Cao, W. D.; Gao, L.; Li, Y. B.; Tian, C. F.; Chen, Q.; Shen, Y. Z.; Ren, F. Z. et al. Molybdenum nanofertilizer boosts biological nitrogen fixation and yield of soybean through delaying nodule senescence and nutrition enhancement. ACS Nano 2023, 17, 14761–14774.

    CAS  Google Scholar 

  57. Wang, C. X.; Yue, L.; Cheng, B. X.; Chen, F. R.; Zhao, X. L.; Wang, Z. Y.; Xing, B. S. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: Beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ. Sci.: Nano 2022, 9, 302–312.

    CAS  Google Scholar 

  58. Majumdar, S.; Long, R. W.; Kirkwood, J. S.; Minakova, A. S.; Keller, A. A. Unraveling metabolic and proteomic features in soybean plants in response to copper hydroxide nanowires compared to a commercial fertilizer. Environ. Sci. Technol. 2021, 55, 13477–13489.

    CAS  Google Scholar 

  59. Lv, Z. Y.; Zhong, M. Z.; Zhou, Q. Q.; Li, Z. F.; Sun, H. D.; Bai, J. R.; Liu, J. S.; Mao, H. Nutrient strengthening of winter wheat by foliar ZnO and Fe3O4 NPs: Food safety, quality, elemental distribution and effects on soil bacteria. Sci. Total Environ. 2023, 893, 164866.

    CAS  Google Scholar 

  60. Sun, X. D.; Ma, J. Y.; Feng, L. J.; Duan, J. L.; Xie, X. M.; Zhang, X. H.; Kong, X. P.; Ding, Z. J.; Yuan, X. Z. Magnetite nanoparticle coating chemistry regulates root uptake pathways and iron chlorosis in plants. Proc. Natl. Acad. Sci. USA 2023, 120, e2304306120.

    CAS  Google Scholar 

  61. Wang, J.; Cao, X.; Wang, C.; Chen, F.; Feng, Y.; Yue, L.; Wang, Z.; Xing, B. Fe-based nanomaterial-induced root nodulation is modulated by flavonoids to improve soybean (Glycine max) growth and quality. ACS Nano 2022, 16, 21047–21062.

    CAS  Google Scholar 

  62. Cao, X. S.; Yue, L.; Wang, C. X.; Luo, X.; Zhang, C. C.; Zhao, X. L.; Wu, F. C.; White, J. C.; Wang, Z. Y.; Xing, B. S. Foliar application with iron oxide nanomaterials stimulate nitrogen fixation, yield, and nutritional quality of soybean. ACS Nano 2022, 16, 1170–1181.

    CAS  Google Scholar 

  63. Rui, M. M.; Ma, C. X.; Hao, Y.; Guo, J.; Rui, Y. K.; Tang, X. L.; Zhao, Q.; Fan, X.; Zhang, Z. T.; Hou, T. Q. et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 2016, 7, 815.

    Google Scholar 

  64. Azarin, K.; Usatov, A.; Minkina, T.; Plotnikov, A.; Kasyanova, A.; Fedorenko, A.; Duplii, N.; Vechkanov, E.; Rajput, V. D.; Mandzhieva, S. et al. Effects of ZnO nanoparticles and its bulk form on growth, antioxidant defense system and expression of oxidative stress related genes in Hordeum vulgare L. Chemosphere 2022, 287, 132167.

    CAS  Google Scholar 

  65. Elhaj Baddar, Z.; Unrine, J. M. Effects of soil pH and coatings on the efficacy of polymer coated ZnO nanoparticulate fertilizers in wheat (Triticum aestivum). Environ. Sci. Technol. 2021, 55, 13532–13540.

    CAS  Google Scholar 

  66. Rossi, L.; Fedenia, L. N.; Sharifan, H.; Ma, X. M.; Lombardini, L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol. Biochem. 2019, 135, 160–166.

    CAS  Google Scholar 

  67. Liu, R. Q.; Zhang, H. Y.; Lal, R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients. Water, Air, Soil Pollut. 2016, 227, 42.

    Google Scholar 

  68. Doolette, C. L.; Read, T. L.; Howell, N. R.; Cresswell, T.; Lombi, E. Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers. Sci. Total Environ. 2020, 749, 142369.

    CAS  Google Scholar 

  69. Sun, M.; Zhao, C. C.; Shang, H. P.; Hao, Y.; Han, L. F.; Qian, K.; White, J. C.; Ma, C. X.; Xing, B. S. ZnO quantum dots outperform nanoscale and bulk particles for enhancing tomato (Solanum lycopersicum) growth and nutritional values. Sci. Total Environ. 2023, 857, 159330.

    CAS  Google Scholar 

  70. Madanayake, N. H.; Adassooriya, N. M.; Salim, N. The effect of hydroxyapatite nanoparticles on Raphanus sativus with respect to seedling growth and two plant metabolites. Environ. Nanotechnol., Monit. Manage. 2021, 15, 100404.

    CAS  Google Scholar 

  71. Kang, H.; Elmer, W.; Shen, Y.; Zuverza-Mena, N.; Ma, C. X.; Botella, P.; White, J. C.; Haynes, C. L. Silica nanoparticle dissolution rate controls the suppression of Fusarium wilt of watermelon (Citrullus lanatus). Environ. Sci. Technol. 2021, 55, 13513–13522.

    CAS  Google Scholar 

  72. Gao, X. Y.; Kundu, A.; Bueno, V.; Rahim, A. A.; Ghoshal, S. Uptake and translocation of mesoporous SiO2-Coated ZnO nanoparticles to Solanum lycopersicum following foliar application. Environ. Sci. Technol. 2021, 55, 13551–13560.

    CAS  Google Scholar 

  73. Hu, P. G.; An, J.; Faulkner, M. M.; Wu, H. H.; Li, Z. H.; Tian, X. L.; Giraldo, J. P. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 2020, 14, 7970–7986.

    CAS  Google Scholar 

  74. Parra-Torrejón, B.; Cáceres, A.; Sánchez, M.; Sainz, L.; Guzmán, M.; Bermúdez-Perez, F. J.; Ramírez-Rodríguez, G. B.; Delgado-López, J. M. Multifunctional nanomaterials for biofortification and protection of tomato plants. Environ. Sci. Technol. 2023, 57, 14950–14960.

    Google Scholar 

  75. Xu, T.; Wang, Y.; Aytac, Z.; Zuverza-Mena, N.; Zhao, Z. T.; Hu, X.; Ng, K. W.; White, J. C.; Demokritou, P. Enhancing agrichemical delivery and plant development with biopolymer-based stimuli responsive core-shell nanostructures. ACS Nano 2022, 16, 6034–6048.

    CAS  Google Scholar 

  76. Read, T. L.; Doolette, C. L.; Li, C.; Schjoerring, J. K.; Kopittke, P. M.; Donner, E.; Lombi, E. Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption. Physiol. Plant. 2020, 170, 384–397.

    CAS  Google Scholar 

  77. Wu, H. H.; Li, Z. H. Nano-enabled agriculture: How do nanoparticles cross barriers in plants. Plant Commun. 2022, 3, 100346.

    CAS  Google Scholar 

  78. Dutta, S.; Pal, S.; Panwar, P.; Sharma, R. K.; Bhutia, P. L. Biopolymeric nanocarriers for nutrient delivery and crop biofortification. ACS Omega 2022, 7, 25909–25920.

    CAS  Google Scholar 

  79. Yang, J. X.; Yan, Z. J.; Xu, D. H.; Wang, X. L. Enhanced growth of broad beans (Vicia faba L.) through separating antagonistic nutrients using nitrogen-doped carbon nanotubes. ACS Sustain. Chem. Eng. 2021, 9, 16437–16449.

    CAS  Google Scholar 

  80. Kottegoda, N.; Sandaruwan, C.; Priyadarshana, G.; Siriwardhana, A.; Rathnayake, U. A.; Berugoda Arachchige, D. M.; Kumarasinghe, A. R.; Dahanayake, D.; Karunaratne, V.; Amaratunga, G. A. J. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 2017, 11, 1214–1221.

    CAS  Google Scholar 

  81. Li, W. C.; Zhang, X. Y.; Zhou, H. J.; Zou, Z. D.; Shen, Y.; Wang, G. H. In situ construction of a magnesium foliar fertilizer with pH-controlled release and high adhesion capacity. Environ. Sci: Nano 2023, 10, 115–128.

    CAS  Google Scholar 

  82. Benício, L. P. F.; Constantino, V. R. L.; Pinto, F. G.; Vergütz, L.; Tronto, J.; da Costa, L. M. Layered double hydroxides: New technology in phosphate fertilizers based on nanostructured materials. ACS Sustain. Chem. Eng. 2017, 5, 399–409.

    Google Scholar 

  83. Lateef, A.; Nazir, R.; Jamil, N.; Alam, S.; Shah, R.; Khan, M. N.; Saleem, M. Synthesis and characterization of zeolite based nano-composite: An environment friendly slow release fertilizer. Microporous Mesoporous Mater. 2016, 232, 174–183.

    CAS  Google Scholar 

  84. Grillo, R.; Mattos, B. D.; Antunes, D. R.; Forini, M. M. L.; Monikh, F. A.; Rojas, O. J. Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today 2021, 37, 101078.

    CAS  Google Scholar 

  85. Ji, Y. Z.; Ma, S.; Lv, S. Q.; Wang, Y. J.; Lü, S. Y.; Liu, M. Z. Nanomaterials for targeted delivery of agrochemicals by an all-in-one combination strategy and deep learning. ACS Appl. Mater. Interfaces 2021, 13, 43374–43386.

    CAS  Google Scholar 

  86. Feng, C.; Lü, S. Y.; Gao, C. M.; Wang, X. G.; Xu, X. B.; Bai, X.; Gao, N. N.; Liu, M. Z.; Wu, L. “Smart” fertilizer with temperature- and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients. ACS Sustain. Chem. Eng. 2015, 3, 3157–3166.

    CAS  Google Scholar 

  87. Li, T.; Lü, S. Y.; Yan, J.; Bai, X.; Gao, C. M.; Liu, M. Z. An environment-friendly fertilizer prepared by layer-by-layer self-assembly for pH-responsive nutrient release. ACS Appl. Mater. Interfaces 2019, 11, 10941–10950.

    CAS  Google Scholar 

  88. Zhang, G. L.; Zhou, L. L.; Cai, D. Q.; Wu, Z. Y. Anion-responsive carbon nanosystem for controlling selenium fertilizer release and improving selenium utilization efficiency in vegetables. Carbon 2018, 129, 711–719.

    CAS  Google Scholar 

  89. Kan, Q. H.; Lu, K.; Deng, R. Q.; Lv, Z. Y.; Wu, W.; Gao, S. X.; Dong, S. P.; Mao, L. An alkali-triggered polydopamine modified mesoporous silica nanopesticide for smart delivery of chlorpyrifos with low loss. ACS Agric. Sci. Technol. 2022, 2, 501–511.

    CAS  Google Scholar 

  90. Avellan, A.; Yun, J.; Zhang, Y. L.; Spielman-Sun, E.; Unrine, J. M.; Thieme, J.; Li, J. R.; Lombi, E.; Bland, G.; Lowry, G. V. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 2019, 13, 5291–5305.

    CAS  Google Scholar 

  91. Li, W. C.; Zhou, H. J.; Zhang, X. Y.; Li, Z. Y.; Zou, Z. D.; Shen, Y.; Wang, G. Z. Oxidation-resistant silicon nanosystem for intelligent controlled ferrous foliar delivery to crops. ACS Nano 2023, 17, 15199–15215.

    CAS  Google Scholar 

  92. Avellan, A.; Yun, J.; Morais, B. P.; Clement, E. T.; Rodrigues, S. M.; Lowry, G. V. Critical review: Role of inorganic nanoparticle properties on their foliar uptake and in Planta translocation. Environ. Sci. Technol. 2021, 55, 13417–13431.

    CAS  Google Scholar 

  93. Zhu, J. H.; Li, J. F.; Shen, Y.; Liu, S. Q.; Zeng, N. D.; Zhan, X. H.; White, J. C.; Gardea-Torresdey, J.; Xing, B. S. Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environ. Sci.. Nano 2020, 7, 3901–3913.

    CAS  Google Scholar 

  94. Eichert, T.; Kurtz, A.; Steiner, U.; Goldbach, H. E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 2008, 134, 151–160.

    CAS  Google Scholar 

  95. Xia, X.; Shi, B. Y.; Wang, L.; Liu, Y.; Zou, Y.; Zhou, Y.; Chen, Y.; Zheng, M.; Zhu, Y. F.; Duan, J. J. et al. From mouse to mouse - ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration 2021, 1, 9–20.

    Google Scholar 

  96. Wang, Y.; Feng, L. J.; Sun, X. D.; Zhang, M. Y.; Duan, J. L.; Xiao, F.; Lin, Y.; Zhu, F. P.; Kong, X. P.; Ding, Z. J. et al. Incorporation of selenium derived from nanoparticles into plant proteins in vivo. ACS Nano 2023, 17, 15847–15856.

    CAS  Google Scholar 

  97. Spielman-Sun, E.; Lombi, E.; Donner, E.; Howard, D.; Unrine, J. M.; Lowry, G. V. Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ. Sci. Technol. 2017, 51, 7361–7368.

    CAS  Google Scholar 

  98. Wong, M. H.; Misra, R. P.; Giraldo, J. P.; Kwak, S. Y.; Son, Y.; Landry, M. P.; Swan, J. W.; Blankschtein, D.; Strano, M. S. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: A universal localization mechanism. Nano Letters 2016, 16, 1161–1172.

    CAS  Google Scholar 

  99. Ma, C. X.; White, J. C.; Zhao, J.; Zhao, Q.; Xing, B. S. Uptake of engineered nanoparticles by food crops: Characterization, mechanisms, and implications. Annu. Rev. Food Sci. Technol. 2018, 9, 129–153.

    CAS  Google Scholar 

  100. Du, Y. M.; Li, P.; Nguyen, A. V.; Xu, Z. P.; Mulligan, D.; Huang, L. B. Zinc uptake and distribution in tomato plants in response to foliar supply of Zn hydroxide - nitrate nanocrystal suspension with controlled Zn solubility. J. Plant Nutr. Soil Sci. 2015, 178, 722–731.

    CAS  Google Scholar 

  101. Lv, J. T.; Christie, P.; Zhang, S. Z. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environ. Sci.: Nano 2019, 6, 41–59.

    CAS  Google Scholar 

  102. Neves, V. M.; Heidrich, G. M.; Rodrigues, E. S.; Enders, M. S. P.; Muller, E. I.; Nicoloso, F. T.; de Carvalho, H. W. P.; Dressler, V. L. La2O3 nanoparticles: Study of uptake and distribution in Pfaffia glomerata (Spreng.) Pedersen by LA-ICP-MS and μ-XRF. Environ. Sci. Technol. 2019, 53, 10827–10834.

    CAS  Google Scholar 

  103. Wojcieszek, J.; Jiménez-Lamana, J.; Bierla, K.; Ruzik, L.; Asztemborska, M.; Jarosz, M.; Szpunar, J. Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish (Raphanus sativus L.). Sci. Total Environ. 2019, 683, 284–292.

    CAS  Google Scholar 

  104. Read, T. L.; Doolette, C. L.; Howell, N. R.; Kopittke, P. M.; Cresswell, T.; Lombi, E. Zinc accumulates in the nodes of wheat following the foliar application of 65Zn Oxide Nano- and Microparticles. Environ. Sci. Technol. 2021, 55, 13523–13531.

    CAS  Google Scholar 

  105. Huang, C.; Xia, T.; Niu, J. F.; Yang, Y.; Lin, S. J.; Wang, X. K.; Yang, G. Q.; Mao, L.; Xing, B. S. Transformation of 14C-labeled graphene to 14CO2 in the shoots of a rice plant. Angew. Chem., Int. Ed. 2018, 57, 9759–9763.

    CAS  Google Scholar 

  106. Zhang, T.; Sun, H. D.; Lv, Z. Y.; Cui, L. L.; Mao, H.; Kopittke, P. M. Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. J. Agric. Food Chem. 2018, 66, 2572–2579.

    CAS  Google Scholar 

  107. Fu, X.; Zheng, Z.; Sha, Z. M.; Cao, H. L.; Yuan, Q. X.; Yu, H. B.; Li, Q. Biorefining waste into nanobiotechnologies can revolutionize sustainable agriculture. Trends Biotechnol. 2022, 40, 1503–1518.

    CAS  Google Scholar 

  108. Zhang, S. G.; Yang, Y. C.; Gao, B.; Li, Y. C.; Liu, Z. G. Superhydrophobic controlled-release fertilizers coated with bio-based polymers with organosilicon and nano-silica modifications. J. Mater. Chem. A 2017, 5, 19943–19953.

    CAS  Google Scholar 

  109. Otoni, C. G.; Azeredo, H. M. C.; Mattos, B. D.; Beaumont, M.; Correa, D. S.; Rojas, O. J. The food-materials nexus: Next generation bioplastics and advanced materials from Agri-food residues. Adv. Mater. 2021, 33, 2102520.

    CAS  Google Scholar 

  110. Barhoum, A.; Jeevanandam, J.; Rastogi, A.; Samyn, P.; Boluk, Y.; Dufresne, A.; Danquah, M. K.; Bechelany, M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale 2020, 12, 22845–22890.

    CAS  Google Scholar 

  111. De, R.; Mahata, M. K.; Kim, K. T. Structure-based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles. Adv. Sci. (Weinh.) 2022, 9, 2105373.

    CAS  Google Scholar 

  112. Shaghaleh, H.; Alhaj Hamoud, Y.; Xu, X.; Wang, S. F.; Liu, H. A pH-responsive/sustained release nitrogen fertilizer hydrogel based on aminated cellulose nanofiber/cationic copolymer for application in irrigated neutral soils. J. Cleaner Prod. 2022, 368, 133098.

    CAS  Google Scholar 

  113. Shang, H. P.; Ma, C. X.; Li, C. Y.; Zhao, J.; Elmer, W.; White, J. C.; Xing, B. S. Copper oxide nanoparticle-embedded hydrogels enhance nutrient supply and growth of lettuce (Lactuca sativa) infected with Fusarium oxysporum f. sp. lactucae. Environ. Sci. Technol. 2021, 55, 13432–13442.

    CAS  Google Scholar 

  114. Bindra, P.; Kaur, K.; Rawat, A.; De Sarkar, A.; Singh, M.; Shanmugam, V. Nano-hives for plant stimuli controlled targeted iron fertilizer application. Chem. Eng. J. 2019, 375, 121995.

    CAS  Google Scholar 

  115. Zhang, S. G.; Fu, X. J.; Tong, Z. H.; Liu, G. D.; Meng, S. Y.; Yang, Y. C.; Helal, M. I. D.; Li, Y. C. Lignin-clay nanohybrid biocomposite-based double-layer coating materials for controllable-release fertilizer. ACS Sustain. Chem. Eng. 2020, 8, 18957–18965.

    CAS  Google Scholar 

  116. Saberi Riseh, R.; Vatankhah, M.; Hassanisaadi, M.; Kennedy, J. F. Increasing the efficiency of agricultural fertilizers using cellulose nanofibrils: A review. Carbohydr. Polym. 2023, 321, 121313.

    CAS  Google Scholar 

  117. do Nascimento, D. M.; Nunes, Y. L.; Feitosa, J. P. A.; Dufresne, A.; Rosa, M. d. F. Cellulose nanocrystals-reinforced core-shell hydrogels for sustained release of fertilizer and water retention. Int. J. Biol. Macromol. 2022, 216, 24–31.

    CAS  Google Scholar 

  118. Shen, Y. M.; Wang, H.; Liu, Z. J.; Li, W. K.; Liu, Y. H.; Li, J. J.; Wei, H. L.; Han, H. Y. Fabrication of a water-retaining, slow-release fertilizer based on nanocomposite double-network hydrogels via ion-crosslinking and free radical polymerization. J. Ind. Eng. Chem. 2021, 93, 375–382.

    CAS  Google Scholar 

  119. Kassem, I.; Ablouh, E. H.; El Bouchtaoui, F. Z.; Kassab, Z.; Khouloud, M.; Sehaqui, H.; Ghalfi, H.; Alami, J.; El Achaby, M. Cellulose nanocrystals-filled poly (vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties. Int. J. Biol. Macromol. 2021, 189, 1029–1042.

    CAS  Google Scholar 

  120. Savy, D.; Cozzolino, V. Novel fertilising products from lignin and its derivatives to enhance plant development and increase the sustainability of crop production. J. Cleaner Prod. 2022, 366, 132832.

    CAS  Google Scholar 

  121. Zhang, S. G.; Yang, M. C.; Meng, S. Y.; Yang, Y. C.; Li, Y. C.; Tong, Z. H. Biowaste-derived, nanohybrid-reinforced double-function slow-release fertilizer with metal-adsorptive function. Chem. Eng. J. 2022, 450, 138084.

    CAS  Google Scholar 

  122. Chen, J.; Fan, X. L.; Zhang, L. D.; Chen, X. J.; Sun, S. L.; Sun, R. C. Research progress in lignin-based slow/controlled release fertilizer. ChemSusChem 2020, 13, 4356–4366.

    CAS  Google Scholar 

  123. Cohen, Y.; Yasuor, H.; Tworowski, D.; Fallik, E.; Poverenov, E. Stimuli-free transcuticular delivery of Zn microelement using biopolymeric nanovehicles: Experimental, theoretical, and in planta studies. ACS Nano 2021, 15, 19446–19456.

    CAS  Google Scholar 

  124. Santana, I.; Wu, H.; Hu, P. G.; Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 2020, 11, 2045.

    CAS  Google Scholar 

  125. Lin, Z. K.; Goswami, N.; Xue, T. T.; Chai, O. J. H.; Xu, H. J.; Liu, Y. X.; Su, Y.; Xie, J. P. Engineering metal nanoclusters for targeted therapeutics: From targeting strategies to therapeutic applications. Adv. Funct. Mater. 2021, 31, 2105662.

    CAS  Google Scholar 

  126. Spielman-Sun, E.; Avellan, A.; Bland, G. D.; Clement, E. T.; Tappero, R. V.; Acerbo, A. S.; Lowry, G. V. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 2020, 12, 3630–3636.

    CAS  Google Scholar 

  127. Zhang, Y. L.; Fu, L. Y.; Li, S. P.; Yan, J. J.; Sun, M. K.; Giraldo, J. P.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V. Star polymer size, charge content, and hydrophobicity affect their leaf uptake and translocation in plants. Environ. Sci. Technol. 2021, 55, 10758–10768.

    CAS  Google Scholar 

  128. Tomoyoshi Fukumorita, M. C. Sugar, amino acid and inorganic contents in rice phloem sap. Plant Cell Physiol. 1982, 23, 273–283.

    Google Scholar 

  129. Hill, M. R.; MacKrell, E. J.; Forsthoefel, C. P.; Jensen, S. P.; Chen, M. S.; Moore, G. A.; He, Z. L.; Sumerlin, B. S. Biodegradable and pH-responsive nanoparticles designed for site-specific delivery in agriculture. Biomacromolecules 2015, 16, 1276–1282.

    CAS  Google Scholar 

  130. Thagun, C.; Horii, Y.; Mori, M.; Fujita, S.; Ohtani, M.; Tsuchiya, K.; Kodama, Y.; Odahara, M.; Numata, K. Non-transgenic gene modulation via spray delivery of nucleic acid/peptide complexes into plant nuclei and chloroplasts. ACS Nano 2022, 16, 3506–3521.

    CAS  Google Scholar 

  131. Santana, I.; Jeon, S. J.; Kim, H. I.; Islam, M. R.; Castillo, C.; Garcia, G. F. H.; Newkirk, G. M.; Giraldo, J. P. Targeted carbon nanostructures for chemical and gene delivery to plant chloroplasts. ACS Nano 2022, 16, 12156–12173.

    CAS  Google Scholar 

  132. Yu, Y. N.; Dai, W.; Luan, Y. N. Bio- and eco-corona related to plants: Understanding the formation and biological effects of plant protein coatings on nanoparticles. Environ. Pollut. 2023, 317, 120784.

    CAS  Google Scholar 

  133. Ahanger, M. A.; Qi, M. D.; Huang, Z. G.; Xu, X. D.; Begum, N.; Qin, C.; Zhang, C. X.; Ahmad, N.; Mustafa, N. S.; Ashraf, M. et al. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicol. Environ. Saf. 2021, 216, 112195.

    CAS  Google Scholar 

  134. Yue, L.; Lian, F.; Han, Y.; Bao, Q. L.; Wang, Z. Y.; Xing, B. S. The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk. Sci. Total Environ. 2019, 656, 9–18.

    CAS  Google Scholar 

  135. Sani, M. N. H.; Amin, M.; Siddique, A. B.; Nasif, S. O.; Ghaley, B. B.; Ge, L. Y.; Wang, F.; Yong, J. W. H. Waste-derived nanobiochar: A new avenue towards sustainable agriculture, environment, and circular bioeconomy. Sci. Total Environ. 2023, 905, 166881.

    CAS  Google Scholar 

  136. Raza, M. A. S.; Ibrahim, M. A.; Ditta, A.; Iqbal, R.; Aslam, M. U.; Muhammad, F.; Ali, S.; Çiğ, F.; Ali, B.; Muhammad Ikram, R. et al. Exploring the recuperative potential of brassinosteroids and nano-biochar on growth, physiology, and yield of wheat under drought stress. Sci. Rep. 2023, 13, 15015.

    CAS  Google Scholar 

  137. Yoon, H. Y.; Lee, J. G.; Esposti, L. D.; Iafisco, M.; Kim, P. J.; Shin, S. G.; Jeon, J. R.; Adamiano, A. Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: Toward a multifunctional nanofertilizer. ACS Omega 2020, 5, 6598–6610.

    CAS  Google Scholar 

  138. Singh, P.; Ghosh, D.; Manyapu, V.; Yadav, M.; Majumder, S. Synergistic impact of iron (III) oxide nanoparticles and organic waste on growth and development of Solanum lycopersicum plants: New paradigm in nanobiofertilizer. Plant Arch. 2019, 19, 339–344.

    Google Scholar 

  139. Yang, X.; Li, R. H.; Li, Y.; Mazarji, M.; Wang, J. W.; Zhang, X.; Song, D.; Wang, Y. J.; Zhang, Z. Q.; Yang, Y. D. et al. Composting pig manure with nano-zero-valent iron amendment: Insights into the carbon cycle and balance. Bioresour. Technol. 2023, 371, 128615.

    CAS  Google Scholar 

  140. Stauber, R. H.; Siemer, S.; Becker, S.; Ding, G. B.; Strieth, S.; Knauer, S. K. Small meets smaller: Effects of nanomaterials on microbial biology, pathology, and ecology. ACS Nano 2018, 12, 6351–6359.

    CAS  Google Scholar 

  141. Sharma, B.; Tiwari, S.; Kumawat, K. C.; Cardinale, M. Nanobiofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. Sci. Total Environ. 2023, 860, 160476.

    CAS  Google Scholar 

  142. Kumari, R.; Singh, D. P. Nano-biofertilizer: An emerging eco-friendly approach for sustainable agriculture. Proc. Natl. Acad. Sci., India Sect. B: Biol. Sci. 2020, 90, 733–741.

    Google Scholar 

  143. Akhtar, N.; Ilyas, N.; Meraj, T. A.; Pour-Aboughadareh, A.; Sayyed, R. Z.; Mashwani, Z. U. R.; Poczai, P. Improvement of plant responses by nanobiofertilizer: A step towards sustainable agriculture. Nanomaterials (Basel) 2022, 12, 965.

    CAS  Google Scholar 

  144. Singh, P.; Kim, Y. J.; Zhang, D. B.; Yang, D. C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34, 588–599.

    CAS  Google Scholar 

  145. Bahrulolum, H.; Nooraei, S.; Javanshir, N.; Tarrahimofrad, H.; Mirbagheri, V. S.; Easton, A. J.; Ahmadian, G. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 2021, 19, 86.

    Google Scholar 

  146. de França Bettencourt, G. M.; Degenhardt, J.; Torres, L. A. Z.; de Andrade Tanobe, V. O.; Soccol, C. R. Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatal. Agric. Biotechnol. 2020, 30, 101822.

    Google Scholar 

  147. Pouri, S.; Motamedi, H.; Honary, S.; Kazeminezhad, I. Biological synthesis of selenium nanoparticles and evaluation of their bioavailability. Braz. Arch. Biol. Technol. 2017, 60, e17160452.

    Google Scholar 

  148. Raliya, R.; Tarafdar, J. C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric. Res. 2013, 2, 48–57.

    CAS  Google Scholar 

  149. Raliya, R.; Tarafdar, J. C.; Biswas, P. Enhancing the mobilization of native phosphorus in the Mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J. Agric. Food Chem. 2016, 64, 3111–3118.

    CAS  Google Scholar 

  150. Sabir, S.; Zahoor, M. A.; Waseem, M.; Siddique, M. H.; Shafique, M.; Imran, M.; Hayat, S.; Malik, I. R.; Muzammil, S. Biosynthesis of ZnO nanoparticles using Bacillus subtilis: Characterization and nutritive significance for promoting plant growth in Zea mays L. Dose Response 2020, 18, 1559325820958911.

    CAS  Google Scholar 

  151. Xu, L.; Zhu, Z. W.; Sun, D. W. Bioinspired nanomodification strategies: Moving from chemical-based agrosystems to sustainable agriculture. ACS Nano 2021, 15, 12655–12686.

    CAS  Google Scholar 

  152. Huang, J. L.; Lin, L. Q.; Sun, D. H.; Chen, H. M.; Yang, D. P.; Li, Q. B. Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 2015, 44, 6330–6374.

    CAS  Google Scholar 

  153. Prasad, R.; Kumar, V.; Kumar, M.; Choudhary, D. Nanobiotechnology in Bioformulations; Springer: Cham, 2019.

    Google Scholar 

  154. Boroumand, N.; Behbahani, M.; Dini, G. Combined effects of phosphate solubilizing bacteria and nanosilica on the growth of Land cress plant. J. Soil Sci. Plant Nutr. 2020, 20, 232–243.

    CAS  Google Scholar 

  155. Kumar, A.; Singh, K.; Verma, P.; Singh, O.; Panwar, A.; Singh, T.; Kumar, Y.; Raliya, R. Effect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Sci. Rep. 2022, 12, 6938.

    CAS  Google Scholar 

  156. de Moraes, A. C. P.; da Silva Ribeiro, L.; de Camargo, E. R.; Lacava, P. T. The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture. 3 Biotech 2021, 11, 318.

    Google Scholar 

  157. Palmqvist, N. G. M.; Bejai, S.; Meijer, J.; Seisenbaeva, G. A.; Kessler, V. G. Nano Titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci. Rep. 2015, 5, 10146.

    CAS  Google Scholar 

  158. Timmusk, S.; Seisenbaeva, G.; Behers, L. Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci. Rep. 2018, 8, 617.

    Google Scholar 

  159. Mary Isabella Sonali, J.; Kavitha, R.; Kumar, P. S.; Rajagopal, R.; Gayathri, K. V.; Ghfar, A. A.; Govindaraju, S. Application of a novel nanocomposite containing micro-nutrient solubilizing bacterial strains and CeO2 nanocomposite as bio-fertilizer. Chemosphere 2022, 286, 131800.

    CAS  Google Scholar 

  160. Huang, X. N.; Cervantes-Avilés, P.; Li, W. W.; Keller, A. A. Drilling into the metabolomics to enhance insight on corn and wheat responses to molybdenum trioxide nanoparticles. Environ. Sci. Technol. 2021, 55, 13452–13464.

    CAS  Google Scholar 

  161. Hussain, M.; Shakoor, N.; Adeel, M.; Ahmad, M. A.; Zhou, H. C.; Zhang, Z. Y.; Xu, M.; Rui, Y. K.; White, J. C. Nano-enabled plant microbiome engineering for disease resistance. Nano Today 2023, 48, 101752.

    CAS  Google Scholar 

  162. Shcherbakova, E. N.; Shcherbakov, A. V.; Andronov, E. E.; Gonchar, L. N.; Kalenskaya, S. M.; Chebotar, V. K. Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) Plants. Symbiosis 2017, 73, 57–69.

    CAS  Google Scholar 

  163. Jiao, L. Y.; Cao, X. S.; Wang, C. X.; Chen, F. R.; Zou, H.; Yue, L.; Wang, Z. Y. Crosstalk between in situ root exudates and rhizobacteria to promote rice growth by selenium nanomaterials. Sci. Total Environ. 2023, 878, 163175.

    CAS  Google Scholar 

  164. Mathes, F.; Murugaraj, P.; Bougoure, J.; Pham, V. T. H.; Truong, V. K.; Seufert, M.; Wissemeier, A. H.; Mainwaring, D. E.; Murphy, D. V. Engineering rhizobacterial community resilience with mannose nanofibril hydrogels towards maintaining grain production under drying climate stress. Soil Biol. Biochem. 2020, 142, 107715.

    CAS  Google Scholar 

  165. Panichikkal, J.; Prathap, G.; Nair, R. A.; Krishnankutty, R. E. Evaluation of plant probiotic performance of Pseudomonas sp. encapsulated in alginate supplemented with salicylic acid and zinc oxide nanoparticles. Int. J. Biol. Macromol. 2021, 166, 138–143.

    CAS  Google Scholar 

  166. Saberi-Rise, R.; Moradi-Pour, M. The effect of Bacillus subtilis Vru1 encapsulated in alginate - bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 2020, 152, 1089–1097.

    Google Scholar 

  167. Maine, E.; Thomas, V. J.; Bliemel, M.; Murira, A.; Utterback, J. The emergence of the nanobiotechnology industry. Nat. Nanotechnol. 2014, 9, 2–5.

    CAS  Google Scholar 

  168. Su, Y. M.; Zhou, X. F.; Meng, H.; Xia, T.; Liu, H. Z.; Rolshausen, P.; Roper, C.; McLean, J. E.; Zhang, Y. L.; Keller, A. A. et al. Cost-benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. Nat. Food 2022, 3, 1020–1030.

    Google Scholar 

  169. Raza, S.; Miao, N.; Wang, P. Z.; Ju, X. T.; Chen, Z. J.; Zhou, J. B.; Kuzyakov, Y. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob. Change Biol. 2020, 26, 3738–3751.

    Google Scholar 

  170. Khazra. Khazra Nano Chelated Complete Micro Fertilizer [Online]. https://sash-co.com/en/khazra/complete-micro-fertilizer/(accessed Sep 26, 2023).

  171. Land Green & Technology Co., Ltd. Zinc Oxide [ZnO] - universal additive agent [Online]. https://lgt.tw/nano.html (accessed Sep 26, 2023).

  172. Aqua-Yield®. Innovative nanoliquids make your crop input program more effective [Online]. https://www.aquayield.com/products (accessed Sep 26, 2023).

  173. Shan Maw Myae Co., Ltd. Nano fertilizer [Online]. https://shanmawmyae.com/agriculture/ (accessed Sep 26, 2023).

  174. Dimkpa, C. O. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life. J. Basic Microbiol. 2014, 54, 889–904.

    CAS  Google Scholar 

  175. Prasad, R.; Bhattacharyya, A.; Nguyen, Q. D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 2017, 8, 1014.

    Google Scholar 

  176. Urth Agriculture. Nano-Ag Answer® [Online]. https://www.urthagriculture.com/nano-ag-fertilizer (accessed Sep 26, 2023).

  177. Chojnacka, K.; Gorazda, K.; Witek-Krowiak, A.; Moustakas, K. Recovery of fertilizer nutrients from materials - Contradictions, mistakes and future trends. Renew. Sustain. Energy Rev. 2019, 110, 485–498.

    CAS  Google Scholar 

  178. Hirt, H.; Al-Babili, S.; Almeida-Trapp, M.; Martin, A.; Aranda, M.; Bartels, D.; Bennett, M.; Blilou, I.; Boer, D.; Boulouis, A. et al. PlantACT! - How to tackle the climate crisis. Trends Plant Sci. 2023, 28, 537–543.

    CAS  Google Scholar 

  179. Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490.

    CAS  Google Scholar 

  180. Pereira, E. I.; da Cruz, C. C. T.; Solomon, A.; Le, A.; Cavigelli, M. A.; Ribeiro, C. Novel slow-release nanocomposite nitrogen fertilizers: The impact of polymers on nanocomposite properties and function. Ind. Eng. Chem. Res. 2015, 54, 3717–3725.

    CAS  Google Scholar 

  181. Lombi, E.; Donner, E.; Dusinska, M.; Wickson, F. A one health approach to managing the applications and implications of nanotechnologies in agriculture. Nat. Nanotechnol. 2019, 14, 523–531.

    CAS  Google Scholar 

  182. Priyam, A.; Singh, P. P.; Afonso, L. O. B.; Schultz, A. G. Exposure to biogenic phosphorus nano-agromaterials promotes early hatching and causes no acute toxicity in zebrafish embryos. Environ. Sci.. Nano 2022, 9, 1364–1380.

    CAS  Google Scholar 

  183. Chen, R.; Ratnikova, T. A.; Stone, M. B.; Lin, S. J.; Lard, M.; Huang, G.; Hudson, J. S.; Ke, P. C. Differential uptake of carbon nanoparticles by plant and Mammalian cells. Small 2010, 6, 612–617.

    CAS  Google Scholar 

  184. Khodakovskaya, M. V.; de Silva, K.; Biris, A. S.; Dervishi, E.; Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012, 6, 2128–2135.

    CAS  Google Scholar 

  185. Lu, K.; Shen, D. L.; Liu, X. K.; Dong, S. P.; Jing, X. P.; Wu, W.; Tong, Y.; Gao, S. X.; Mao, L. Uptake of iron oxide nanoparticles inhibits the photosynthesis of the wheat after foliar exposure. Chemosphere 2020, 259, 127445.

    CAS  Google Scholar 

  186. Sun, D. Q.; Hussain, H. I.; Yi, Z. F.; Rookes, J. E.; Kong, L. X.; Cahill, D. M. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 2016, 152, 81–91.

    CAS  Google Scholar 

  187. Murali, M.; Gowtham, H. G.; Singh, S. B.; Shilpa, N.; Aiyaz, M.; Alomary, M. N.; Alshamrani, M.; Salawi, A.; Almoshari, Y.; Ansari, M. A. et al. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects. Sci. Total Environ. 2022, 811, 152249.

    CAS  Google Scholar 

  188. Pradhan, S.; Patra, P.; Mitra, S.; Dey, K. K.; Jain, S.; Sarkar, S.; Roy, S.; Palit, P.; Goswami, A. Manganese nanoparticles: Impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J. Agric. Food Chem. 2014, 62, 8777–8785.

    CAS  Google Scholar 

  189. Maity, D.; Gupta, U.; Saha, S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: Next-generation nanotechnology for crop production, protection and management. Nanoscale 2022, 14, 13950–13989.

    CAS  Google Scholar 

  190. Dimkpa, C. O.; Bindraban, P. S. Nanofertilizers: New products for the industry. J. Agric. Food Chem. 2018, 66, 6462–6473.

    CAS  Google Scholar 

  191. Kalwani, M.; Chakdar, H.; Srivastava, A.; Pabbi, S.; Shukla, P. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere 2022, 287, 132107.

    CAS  Google Scholar 

  192. Parada, J.; Rubilar, O.; Fernández-Baldo, M. A.; Bertolino, F. A.; Durán, N.; Seabra, A. B.; Tortella, G. R. The nanotechnology among US: Are metal and metal oxides nanoparticles a Nano or mega risk for soil microbial communities. Crit. Rev. Biotechnol. 2019, 39, 157–172.

    CAS  Google Scholar 

  193. Asadishad, B.; Chahal, S.; Akbari, A.; Cianciarelli, V.; Azodi, M.; Ghoshal, S.; Tufenkji, N. Amendment of agricultural soil with metal nanoparticles: Effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 2018, 52, 1908–1918.

    CAS  Google Scholar 

  194. Yausheva, E. V.; Sizova, E. A.; Gavrish, I. A.; Lebedev, S. V.; Kayumov, F. G. Effect of Al2O3 nanoparticles on soil microbiocenosis, antioxidant status and intestinal microflora of red Californian worm (Eisenia foetida). Agric. Biol. 2017, 52, 191–199.

    Google Scholar 

  195. Zwingmann, N.; Mackinnon, I. D. R.; Gilkes, R. J. Use of a zeolite synthesised from alkali treated kaolin as a K fertiliser: Glasshouse experiments on leaching and uptake of K by wheat plants in sandy soil. Appl. Clay Sci. 2011, 53, 684–690.

    CAS  Google Scholar 

  196. Hawthorne, J.; De la Torre Roche, R.; Xing, B. S.; Newman, L. A.; Ma, X. M.; Majumdar, S.; Gardea-Torresdey, J.; White, J. C. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ. Sci. Technol. 2014, 48, 13102–13109.

    CAS  Google Scholar 

  197. Ebbs, S. D.; Bradfield, S. J.; Kumar, P.; White, J. C.; Ma, X. M. Projected dietary intake of zinc, copper, and cerium from consumption of carrot (Daucus carota) exposed to metal oxide nanoparticles or metal ions. Front. Plant Sci. 2016, 7, 188.

    Google Scholar 

  198. Hofmann, T.; Lowry, G. V.; Ghoshal, S.; Tufenkji, N.; Brambilla, D.; Dutcher, J. R.; Gilbertson, L. M.; Giraldo, J. P.; Kinsella, J. M.; Landry, M. P. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 2020, 1, 416–425.

    CAS  Google Scholar 

  199. van de Poel, I.; Robaey, Z. Safe-by-design: From safety to responsibility. Nanoethics 2017, 11, 297–306.

    Google Scholar 

  200. Wang, W. N.; Tarafdar, J. C.; Biswas, P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res. 2013, 15, 1417.

    Google Scholar 

  201. Frewer, L. J.; Gupta, N.; George, S.; Fischer, A. R. H.; Giles, E. L.; Coles, D. Consumer attitudes towards nanotechnologies applied to food production. Trends Food Sci. Technol. 2014, 40, 211–225.

    CAS  Google Scholar 

  202. Brands of Humic acid Nano organic fertilizer, Humic acid organic fertilizer buyers [Online]. https://hanhefertilizer.en.made-in-china.com/product/PwqGldmUZbrK/China-Brands-of-Humic-Acid-Nano-Organic-Fertilizer-Humic-Acid-Organic-Fertilizer-Buyers.html (accessed Sep 26, 2023).

  203. Nano Max NPK fertilizer [Online]. https://www.indiamart.com/proddetail/nano-max-npk-fertilizer-12188041548.html (accessed Sep 26, 2023).

  204. Ali, F.; Neha, K.; Parveen, S. Current regulatory landscape of nanomaterials and nanomedicines: A global perspective. J. Drug Deliv. Sci. Technol. 2023, 80, 104118.

    CAS  Google Scholar 

  205. Labuda, J.; Barek, J.; Gajdosechova, Z.; Goenaga-Infante, H.; Johnston, L. J.; Mester, Z.; Shtykov, S. Analytical chemistry of engineered nanomaterials: Part 1. Scope, regulation, legislation, and metrology (IUPAC Technical Report). Pure Appl. Chem. 2023, 95, 133–163.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (No. 2022YFA1207300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Cao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Xu, D., Cao, Y. et al. Advancing sustainable agriculture: Enhancing crop nutrition with next-generation nanotech-based fertilizers. Nano Res. 16, 13205–13225 (2023). https://doi.org/10.1007/s12274-023-6284-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6284-8

Keywords

Navigation