Skip to main content
Log in

Bioinspired nanomaterials for the treatment of bacterial infections

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Infectious diseases pose a serious threat to global health. Although immunizations can control most viral infections, bacterial infections, particularly those caused by drug-resistant strains, continue to cause high rates of illness and death. Unfortunately, the creation of new antibiotics has come to a grinding halt in the last ten years. In response to this crisis, nanotechnology has emerged as a hopeful solution to tackle drug resistance and enhance treatment results. A large variety of biomimetic nanomaterials, termed nanozymes, have demonstrated strong antimicrobial efficacy. While the inherent toxicity of nanomaterials is a concern, recent studies have harnessed the stimuli-responsiveness of nanomaterials to enable local and/or targeted delivery to reduce the treatment side effects. Indeed, the physicochemical versatility of nanomaterials affords many degrees of freedom that enable rational design of smart or autonomous therapeutics, which cannot be achieved using conventional antibiotics. The design straddles the fields of catalysis, nanoscience, microbiology, and translational medicine. To provide an overview of this interdisciplinary landscape, this review is organized based on composition into lipid, metal, metal oxide, and non-metallic nanomaterials. Liposomes as a delivery vehicle enhance bioavailability and reduce toxicity. Metal- and metal oxide-based nanomaterials inhibit bacterial growth by mimicking natural enzymatic activities such as peroxidase (POD) and oxidase. Furthermore, carbon-, polymer-, and cell membrane-based nanomaterials are combined into a discussion on non-metallic materials. At the end of this review, potentially fruitful directions for future bioinspired nanomaterials in infectious disease treatment are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carvalho, G. C.; Sábio, R. M.; de Cássia Ribeiro, T.; Monteiro, A. S.; Pereira, D. V.; Ribeiro, S. J. L.; Chorilli, M. Highlights in mesoporous silica nanoparticles as a multifunctional controlled drug delivery nanoplatform for infectious diseases treatment. Pharm. Res. 2020, 37, 191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, P. Y.; Lang, J. Y.; Zhou, Y. L.; Khlyustova, A.; Zhang, Z. Y.; Ma, X. J.; Liu, S.; Cheng, Y. F.; Yang, R. An imidazolium-based zwitterionic polymer for antiviral and antibacterial dual functional coatings. Sci. Adv. 2022, 8, eabl8812.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248.

    Article  Google Scholar 

  4. Quagliarello, V.; Scheld, W. M. Bacterial meningitis: Pathogenesis, pathophysiology, and progress. N. Engl. J. Med. 1992, 327, 864–872.

    Article  CAS  PubMed  Google Scholar 

  5. Tzeng, Y. L.; Stephens, D. S. Epidemiology and pathogenesis of Neisseria meningitidis. Microbes Infect. 2000, 2, 687–700.

    Article  CAS  PubMed  Google Scholar 

  6. van Hal, S. J.; Jensen, S. O.; Vaska, V. L.; Espedido, B. A.; Paterson, D. L.; Gosbell, I. B. Predictors of mortality in Staphylococcus aureus bacteremia. Clin. Microbiol. Rev. 2012, 25, 362–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang, Y. W.; Sussman, M.; Liu, D. Y.; Poxton, I.; Schwartzman, J. Molecular Medical Microbiology; 2nd edition. Academic Press, 2014.

  8. Deurenberg, R. H.; Vink, C.; Kalenic, S.; Friedrich, A. W.; Bruggeman, C. A.; Stobberingh, E. E. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2007, 13, 222–235.

    Article  CAS  PubMed  Google Scholar 

  9. Aminov, R. I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Coates, A. R. M.; Halls, G.; Hu, Y. M. Novel classes of antibiotics or more of the same. Br. J. Pharmacol. 2011, 163, 184–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hashemi, S.; Nasrollah, A.; Rajabi, M. Irrational antibiotic prescribing: A local issue or global concern. EXCLI J. 2013, 12, 384–395.

    PubMed  PubMed Central  Google Scholar 

  12. Zeng, X. M.; Lin, J. Beta- lactamase induction and cell wall metabolism in Gram-negative bacteria. Front. Microbiol. 2013, 4, 128.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Velkov, T.; Thompson, P. E.; Nation, R. L.; Li, J. Structure-activity relationships of polymyxin antibiotics. J. Med. Chem. 2010, 53, 1898–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krause, K. M.; Serio, A. W.; Kane, T. R.; Connolly, L. E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Champney, W. S. Antibiotics targeting bacterial ribosomal subunit biogenesis. J. Antimicrob. Chemother. 2020, 75, 787–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwarz, S.; Shen, J. Z.; Kadlec, K.; Wang, Y.; Michael, G. B.; Feßler, A. T.; Vester, B. Lincosamides, streptogramins, phenicols, and pleuromutilins: Mode of action and mechanisms of resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a027037.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bush, N. G.; Diez-Santos, I.; Abbott, L. R.; Maxwell, A. Quinolones: Mechanism, lethality and their contributions to antibiotic resistance. Molecules 2020, 25, 5662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ausubel, J. H.; Meyer, P. S.; Wernick, I. K. Death and the human environment: The United States in the 20th century. Technol. Soc. 2001, 23, 131–146.

    Article  Google Scholar 

  19. Casal, M.; Vaquero, M.; Rinder, H.; Tortoli, E.; Grosset, J.; Rüsch-Gerdes, S.; Gutiérrez, J.; Jarlier, V. A case-control study for multidrug-resistant tuberculosis: Risk factors in four European countries. Microb. Drug Resist. 2005, 11, 62–67.

    Article  CAS  PubMed  Google Scholar 

  20. Chambers, H. F. The changing epidemiology of Staphylococcus aureus. Emerg. Infect. Dis. 2001, 7, 178–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hemaiswarya, S.; Kruthiventi, A. K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652.

    Article  CAS  PubMed  Google Scholar 

  22. Uldum, S. A.; Bangsborg, J. M.; Gahrn-Hansen, B.; Ljung, R.; Mølvadgaard, M.; Petersen, R. F.; Svarrer, C. W. Epidemic of Mycoplasma pneumoniae infection in Denmark, 2010 and 2011. Eurosurveillance 2012, 17, 20073.

    Article  PubMed  Google Scholar 

  23. Livermore, D. M. Bacterial resistance: Origins, epidemiology, and impact. Clin. Infect. Dis. 2003, 36, S11–S23.

    Article  CAS  PubMed  Google Scholar 

  24. Van Bambeke, F.; Glupczynski, Y.; Plésiat, P.; Pechère, J. C.; Tulkens, P. M. Antibiotic efflux pumps in prokaryotic cells: Occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J. Antimicrob. Chemother. 2003, 51, 1055–1065.

    Article  CAS  PubMed  Google Scholar 

  25. Berger-Bächi, B. Resistance mechanisms of Gram-positive bacteria. Int. J. Med. Microbiol. 2002, 292, 27–35.

    Article  PubMed  Google Scholar 

  26. Xu, Z.; Li, L.; Shirtliff, M. E.; Peters, B. M.; Li, B.; Peng, Y.; Alam, M. J.; Yamasaki, S.; Shi, L. Resistance class 1 integron in clinical methicillin-resistant Staphylococcus aureus strains in southern China, 2001–2006. Clin. Microbiol. Infect. 2011, 17, 714–718.

    Article  CAS  PubMed  Google Scholar 

  27. Levy, S. B. Antibiotic resistance: Consequences of inaction. Clin. Infect. Dis. 2001, 33, S124–S129.

    Article  CAS  PubMed  Google Scholar 

  28. Dancer, S. J. The problem with cephalosporins. J. Antimicrob. Chemother. 2001, 48, 463–478.

    Article  CAS  PubMed  Google Scholar 

  29. Capita, R.; Alonso-Calleja, C. Antibiotic- resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr. 2013, 53, 11–48.

    Article  CAS  PubMed  Google Scholar 

  30. Angsantikul, P.; Thamphiwatana, S.; Zhang, Q. Z.; Spiekermann, K.; Zhuang, J.; Fang, R. H.; Gao, W. W.; Obonyo, M.; Zhang, L. F. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Adv. Ther. 2018, 1, 1800016.

    Article  Google Scholar 

  31. Vickers, N. J. Animal communication: When I’m calling you, will you answer too. Curr. Biol. 2017, 27, R713–R715.

    Article  CAS  PubMed  Google Scholar 

  32. Gareev, K. G.; Grouzdev, D. S.; Koziaeva, V. V.; Sitkov, N. O.; Gao, H. L.; Zimina, T. M.; Shevtsov, M. Biomimetic nanomaterials: Diversity, technology, and biomedical applications. Nanomaterials 2022, 12, 2485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ngo, T. D. Biomimetic Technologies: Principles and Applications; Woodhead Publishing: Cambridge, 2015.

    Google Scholar 

  34. Zaidi, S. A. Molecular imprinted polymers as drug delivery vehicles. Drug Deliv. 2016, 23, 2262–2271.

    Article  CAS  PubMed  Google Scholar 

  35. Milovanovic, M.; Arsenijevic, A.; Milovanovic, J.; Kanjevac, T.; Arsenijevic, N. Nanoparticles in antiviral therapy. In Antimicrobial Nanoarchitectonics: From Synthesis to Applications. Grumezescu, A. M., Ed.; Elsevier: Amsterdam, 2017; pp 383–410.

    Chapter  Google Scholar 

  36. Singh, L.; Kruger, H. G.; Maguire, G. E. M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 2017, 4, 105–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Evans, G. B.; Tyler, P. C.; Schramm, V. L. Immucillins in infectious diseases. ACS Infect. Dis. 2018, 4, 107–117.

    Article  CAS  PubMed  Google Scholar 

  38. Gupta, A.; Landis, R. F.; Rotello, V. M. Nanoparticle-based antimicrobials: Surface functionality is critical. F7000Res. 2016, 5, 364.

    Article  Google Scholar 

  39. Gupta, A.; Mumtaz, S.; Li, C. H.; Hussain, I.; Rotello, V. M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pelgrift, R. Y.; Friedman, A. J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013, 65, 1803–1815.

    Article  CAS  PubMed  Google Scholar 

  41. Friedman, A.; Blecher, K.; Sanchez, D.; Tuckman-Vernon, C.; Gialanella, P.; Friedman, J. M.; Martinez, L. R.; Nosanchuk, J. D. Susceptibility of Gram-positive and negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence 2011, 2, 217–221.

    Article  PubMed  Google Scholar 

  42. Hajipour, M. J.; Fromm, K. M.; Ashkarran, A. A.; de Aberasturi, D. J.; de Larramendi, I. R.; Rojo, T.; Serpooshan, V.; Parak, W. J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511.

    Article  CAS  PubMed  Google Scholar 

  43. Schairer, D. O.; Chouake, J. S.; Nosanchuk, J. D.; Friedman, A. J. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 2012, 3, 271–279.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gupta, A.; Saleh, N. M.; Das, R.; Landis, R. F.; Bigdeli, A.; Motamedchaboki, K.; Campos, A. R.; Pomeroy, K.; Mahmoudi, M.; Rotello, V. M. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. Nano Futures 2017, 1, 015004.

    Article  ADS  Google Scholar 

  45. Padwal, P.; Bandyopadhyaya, R.; Mehra, S. Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir 2014, 30, 15266–15276.

    Article  CAS  PubMed  Google Scholar 

  46. Nallathamby, P. D.; Lee, K. J.; Desai, T.; Xu, X. H. N. Study of the multidrug membrane transporter of single living Pseudomonas aeruginosa cells using size-dependent plasmonic nanoparticle optical probes. Biochemistry 2010, 49, 5942–5953.

    Article  CAS  PubMed  Google Scholar 

  47. Lang, J. Y.; Ma, X. J.; Liu, S. S.; Streever, D. L.; Serota, M. D.; Franklin, T.; Loew, E. R.; Yang, R. On-demand synthesis of antiseptics at the site of infection for treatment of otitis media. Nano Today 2022, 47, 101672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou, L. Y.; Qiu, T.; Lv, F. T.; Liu, L. B.; Ying, J. M.; Wang, S. Self-assembled nanomedicines for anticancer and antibacterial applications. Adv. Healthc. Mater. 2018, 7, 1800670.

    Article  Google Scholar 

  49. Ma, X. J.; Lang, J. Y.; Chen, P. Y.; Yang, R. Silver nanoparticles as an effective antimicrobial against otitis media pathogens. AIChE J. 2021, 67, e17468.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma, X. J.; Lang, J. Y.; Chen, P. Y.; Tang, W. J.; Shindler, S.; Yang, R. A cascade nanozyme with antimicrobial effects against nontypeable Haemophilus influenzae. Nanoscale 2023, 15, 1014–1023.

    Article  CAS  PubMed  Google Scholar 

  51. Moretton, M. A.; Glisoni, R. J.; Chiappetta, D. A.; Sosnik, A. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf. B: Biointerfaces 2010, 79, 467–479.

    Article  CAS  PubMed  Google Scholar 

  52. Vernekar, A. A.; Sinha, D.; Srivastava, S.; Paramasivam, P. U.; D’Silva, P.; Mugesh, G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat. Commun. 2014, 5, 5301.

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Kumar, M.; Curtis, A.; Hoskins, C. Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics 2018, 10, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Luo, D. D.; Carter, K. A.; Molins, E. A. G.; Straubinger, N. L.; Geng, J. M.; Shao, S.; Jusko, W. J.; Straubinger, R. M.; Lovell, J. F. Pharmacokinetics and pharmacodynamics of liposomal chemophototherapy with short drug-light intervals. J. Control. Release 2019, 297, 39–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rukavina, Z.; Vanić, Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics 2016, 8, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ferreira, M.; Ogren, M.; Dias, J. N. R.; Silva, M.; Gil, S.; Tavares, L.; Aires-da-Silva, F.; Gaspar, M. M.; Aguiar, S. I. Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules 2021, 26, 2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gbian, D. L.; Omri, A. The impact of an efflux pump inhibitor on the activity of free and liposomal antibiotics against Pseudomonas aeruginosa. Pharmaceutics 2021, 13, 577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shang, Y. X.; Liu, F. S.; Wang, Y. N.; Li, N.; Ding, B. Q. Enzyme mimic nanomaterials and their biomedical applications. ChemBioChem 2020, 21, 2408–2418.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, D. Z.; Chen, Z. Z.; Gao, Z.; Tammina, S. K.; Yang, Y. L. Nanozymes used for antimicrobials and their applications. Colloids Surf. B: Biointerfaces 2020, 195, 111252.

    Article  CAS  PubMed  Google Scholar 

  60. Chen, Z. W.; Wang, Z. Z.; Ren, J. S.; Qu, X. G. Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res. 2018, 51, 789–799.

    Article  CAS  PubMed  Google Scholar 

  61. Ji, H. W.; Dong, K.; Yan, Z. Q.; Ding, C.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection. Small 2016, 12, 6200–6206.

    Article  CAS  PubMed  Google Scholar 

  62. Yan, L.; Mu, J.; Ma, P. X.; Li, Q.; Yin, P. X.; Liu, X.; Cai, Y. Y.; Yu, H. P.; Liu, J. C.; Wang, G. Q. et al. Gold nanoplates with superb photothermal efficiency and peroxidase-like activity for rapid and synergistic antibacterial therapy. Chem. Commun. 2021, 57, 1133–1136.

    Article  CAS  Google Scholar 

  63. Juven, B. J.; Pierson, M. D. Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation. J. Food Prot. 1996, 59, 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  64. Sies, H.; Berndt, C.; Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748.

    Article  CAS  PubMed  Google Scholar 

  65. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  PubMed  Google Scholar 

  66. Lin, S. C.; Wu, J. J. X.; Yao, J.; Cao, W.; Muhammad, F.; Wei, H. Nanozymes for biomedical sensing applications: From in vitro to living systems. In Biomedical Applications of Functionalized Nanomaterials. Sarmento, B.; das Neves, J., Eds.; Elsevier: Amsterdam, 2018; pp 171–209.

    Google Scholar 

  67. Ergene, C.; Yasuhara, K.; Palermo, E. F. Biomimetic antimicrobial polymers: Recent advances in molecular design. Polym. Chem. 2018, 9, 2407–2427.

    Article  CAS  Google Scholar 

  68. Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kroll, A. V.; Fang, R. H.; Zhang, L. F. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug. Chem. 2017, 28, 23–32.

    Article  CAS  PubMed  Google Scholar 

  70. Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. AUv. Mater. 2017, 29, 1606209.

    Google Scholar 

  71. Oroojalian, F.; Beygi, M.; Baradaran, B.; Mokhtarzadeh, A.; Shahbazi, M. A. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small 2021, 17, 2006484.

    Article  CAS  Google Scholar 

  72. Fang, R. H.; Hu, C. M. J.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O’Connor, D. E.; Zhang, L. F. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14, 2181–2188.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gootz, T. D. The global problem of antibiotic resistance. Crit. Rev. Immunol. 2010, 30, 79–93.

    Article  CAS  PubMed  Google Scholar 

  74. Hasan, T. H.; Al-Harmoosh, R. A. Mechanisms of antibiotics resistance in bacteria. Syst. Rev. Pharm. 2020, 11, 817–823.

    CAS  Google Scholar 

  75. Andersson, D. I. Persistence of antibiotic resistant bacteria. Curr. Opin. Microbiol. 2003, 6, 452–456.

    Article  CAS  PubMed  Google Scholar 

  76. Singh, R.; Lillard, J. W. Jr. Nanoparticle- based targeted drug delivery. Exp. Mol. Pathol. 2009, 86, 215–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kukowska-Latallo, J. F.; Candido, K. A.; Cao, Z. Y.; Nigavekar, S. S.; Majoros, I. J.; Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker, J. R. Jr. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005, 65, 5317–5324.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, X. Y.; Tang, W. J.; Wen, H. Y.; Wu, E. C.; Ding, T. H.; Gu, J.; Lv, Z. W.; Zhan, C. Y. Evaluation of CTB-sLip for targeting lung metastasis of colorectal cancer. Pharmaceutics 2022, 14, 868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Z.; Chu, Y. X.; Li, C.; Tang, W. J.; Qian, J.; Wei, X. L.; Lu, W. Y.; Ying, T. L.; Zhan, C. Y. Anti-PEG scFv corona ameliorates accelerated blood clearance phenomenon of PEGylated nanomedicines. J. Control. Release 2021, 330, 493–501.

    Article  CAS  PubMed  Google Scholar 

  81. Tang, W. J.; Zhang, Z.; Li, C.; Chu, Y. X.; Qian, J.; Ying, T. L.; Lu, W. Y.; Zhan, C. Y. Facile separation of PEGylated liposomes enabled by anti-PEG scFv. Nano Lett. 2021, 21, 10107–10113.

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Bangham, A. D.; Horne, R. W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 1964, 8, 660–668, IN2–IN10.

    Article  CAS  PubMed  Google Scholar 

  83. Large, D. E.; Abdelmessih, R. G.; Fink, E. A.; Auguste, D. T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851.

    Article  CAS  PubMed  Google Scholar 

  84. Spector, A. A.; Yorek, M. A. Membrane lipid composition and cellular function. J. Lipid Res. 1985, 26, 1015–1035.

    Article  CAS  PubMed  Google Scholar 

  85. Nakhaei, P.; Margiana, R.; Bokov, D. O.; Abdelbasset, W. K.; Jadidi Kouhbanani, M. A.; Varma, R. S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol. 2021, 9, 705886.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lu, L. W.; Xu, Q. Z.; Wang, J.; Wu, S. Y.; Luo, Z. M.; Lu, W. Y. Drug nanocrystals for active tumor-targeted drug delivery. Pharmaceutics 2022, 14, 797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dawidczyk, C. M.; Kim, C.; Park, J. H.; Russell, L. M.; Lee, K. H.; Pomper, M. G.; Searson, P. C. State-of-the- art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. J. Control. Release 2014, 187, 133–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Boswell, G. W.; Buell, D.; Bekersky, I. AmBisome (liposomal amphotericin B): A comparative review. J. Clin. Pharmacol. 1998, 38, 583–592.

    Article  CAS  PubMed  Google Scholar 

  89. Groll, A. H.; Rijnders, B. J. A.; Walsh, T. J.; Adler-Moore, J.; Lewis, R. E.; Brüggemann, R. J. M. Clinical pharmacokinetics, pharmacodynamics, safety and efficacy of liposomal amphotericin B. Clin. Infect. Dis. 2019, 68, S260–S274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Griffith, D. E.; Eagle, G.; Thomson, R.; Aksamit, T. R.; Hasegawa, N.; Morimoto, K.; Addrizzo-Harris, D. J.; O’Donnell, A. E.; Marras, T. K.; Flume, P. A. et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am. J. Respir. Crit. Care Med. 2018, 198, 1559–1569.

    Article  CAS  PubMed  Google Scholar 

  91. Hutchings, M. I.; Truman, A. W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80.

    Article  CAS  PubMed  Google Scholar 

  92. Jeu, L.; Piacenti, F. J.; Lyakhovetskiy, A. G.; Fung, H. B. Voriconazole. Clin. Ther. 2003, 25, 1321–1381.

    Article  CAS  PubMed  Google Scholar 

  93. Saravolatz, L. D.; Johnson, L. B.; Kauffman, C. A. Voriconazole: A new triazole antifungal agent. Clin. Infect. Dis. 2003, 36, 630–637.

    Article  Google Scholar 

  94. Veloso, D. F. M. C.; Benedetti, N. I. G. M.; Ávila, R. I.; Bastos, T. S. A.; Silva, T. C.; Silva, M. R. R.; Batista, A. C.; Valadares, M. C.; Lima, E. M. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv. 2018, 25, 1585–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012, 134, 2139–2147.

    Article  CAS  PubMed  Google Scholar 

  96. Moghimi, S. M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 2003, 42, 463–478.

    Article  CAS  PubMed  Google Scholar 

  97. Wang, H. Y.; Wang, Y. S.; Yuan, C. Z.; Xu, X.; Zhou, W. B.; Huang, Y. H.; Lu, H.; Zheng, Y.; Luo, G.; Shang, J. et al. Polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant lipid nanoparticles in rats. NPJ vaccines 2023, 8, 169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barenholz, Y. C. Dxxil®-The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134.

    Article  CAS  PubMed  Google Scholar 

  99. Najjar, V. A.; Nishioka, K. ‘Tuftsin’: A natural phagocytosis stimulating peptide. Nature 1970, 228, 672–673.

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Agrawal, A. K.; Gupta, C. M. Tuftsin- bearing liposomes in treatment of macrophage-based infections. Adv. Drug Deliv. Rev. 2000, 41, 135–146.

    Article  CAS  PubMed  Google Scholar 

  101. Wijagkanalan, W.; Kawakami, S.; Takenaga, M.; Igarashi, R.; Yamashita, F.; Hashida, M. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J. Control. Release 2008, 125, 121–130.

    Article  CAS  PubMed  Google Scholar 

  102. Li, G. H.; Wang, M. K.; Ding, T. H.; Wang, J.; Chen, T.; Shao, Q. W.; Jiang, K.; Wang, L. P.; Yu, Y. F.; Pan, F. et al. cRGD enables rapid phagocytosis of liposomal vancomycin for intracellular bacterial clearance. J. Control. Release 2022, 344, 202–213.

    Article  CAS  PubMed  Google Scholar 

  103. Bogdanowich-Knipp, S. J.; Chakrabarti, S.; Siahaan, T. J.; Williams, T. D.; Dillman, R. K. Solution stability of linear vs. cyclic RGD peptides. J. Pept. Res. 1999, 53, 530–541.

    Article  CAS  PubMed  Google Scholar 

  104. Dechantsreiter, M. A.; Planker, E.; Mathä, B.; Lohof, E.; Hölzemann, G.; Jonczyk, A.; Goodman, S. L.; Kessler, H. N-Methylated cyclic RGD peptides as highly active and selective αvβ3 integrin antagonists. J. Med. Chem. 1999, 42, 3033–3040.

    Article  CAS  PubMed  Google Scholar 

  105. Nation, R. L.; Li, J. Colistin in the 21st century. Curr. Opin. Infect. Dis. 2009, 22, 535–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Menina, S.; Eisenbeis, J.; Kamal, M. A. M.; Koch, M.; Bischoff, M.; Gordon, S.; Loretz, B.; Lehr, C. M. Bioinspired liposomes for oral delivery of colistin to combat intracellular infections by Salmonella enterica. Adv. Healthc. Mater. 2019, 8, 1900564.

    Article  Google Scholar 

  107. Los, F. C. O.; Randis, T. M.; Aroian, R. V.; Ratner, A. J. Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 2013, 77, 173–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Henry, B. D.; Neill, D. R.; Becker, K. A.; Gore, S.; Bricio-Moreno, L.; Ziobro, R.; Edwards, M. J.; Mühlemann, K.; Steinmann, J.; Kleuser, B. et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat. Biotechnol. 2015, 33, 81–88.

    Article  CAS  PubMed  Google Scholar 

  109. Filipczak, N.; Pan, J. Y.; Yalamarty, S. S. K.; Torchilin, V. P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020, 156, 4–22.

    Article  CAS  PubMed  Google Scholar 

  110. Kirtane, A. R.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G. Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol. 2021, 16, 369–384.

    Article  ADS  CAS  PubMed  Google Scholar 

  111. Bassetti, M.; Vena, A.; Russo, A.; Peghin, M. Inhaled liposomal antimicrobial delivery in lung infections. Drugs 2020, 80, 1309–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Leal, J.; Smyth, H. D. C.; Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 2017, 532, 555–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Roy, I.; Vij, N. Nanodelivery in airway diseases: Challenges and therapeutic applications. Nanomed.: Nanotechnol. Biol. Med. 2010, 6, 237–244.

    Article  CAS  Google Scholar 

  114. Pornpattananangkul, D.; Zhang, L.; Olson, S.; Aryal, S.; Obonyo, M.; Vecchio, K.; Huang, C. M.; Zhang, L. F. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J. Am. Chem. Soc. 2011, 133, 4132–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Giddings, K. S.; Johnson, A. E.; Tweten, R. K. Redefining cholesterol’s role in the mechanism of the cholesterol-dependent cytolysins. Proc. Natl. Acad. Sci. USA 2003, 100, 11315–11320.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dal Peraro, M.; van der Goot, F. G. Pore- forming toxins: Ancient, but never really out of fashion. Nat. Rev. Microbiol. 2016, 14, 77–92.

    Article  PubMed  Google Scholar 

  117. Xie, J. J.; Meng, Z. P.; Han, X. X.; Li, S. P.; Ma, X. N.; Chen, X. Y.; Liang, Y. M.; Deng, X. M.; Xia, K. X.; Zhang, Y. et al. Cholesterol microdomain enhances the biofilm eradication of antibiotic liposomes. Adv. Healthc. Mater. 2022, 11, 2101745.

    Article  CAS  Google Scholar 

  118. Lai, C. C.; Shih, T. P.; Ko, W. C.; Tang, H. J.; Hsueh, P. R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, N.; Ferhan, A. R.; Yoon, B. K.; Jackman, J. A.; Cho, N. J.; Majima, T. Chemical design principles of next-generation antiviral surface coatings. Chem. Soc. Rev. 2021, 50, 9741–9765.

    Article  CAS  PubMed  Google Scholar 

  120. Nasrollahzadeh, M.; Sajjadi, M.; Soufi, G. J.; Iravani, S.; Varma, R. S. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials 2020, 10, 1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sen, C. K.; Gordillo, G. M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T. K.; Gottrup, F.; Gurtner, G. C.; Longaker, M. T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen. 2009, 17, 763–771.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chang, R. Y. K.; Morales, S.; Okamoto, Y.; Chan, H. K. Topical application of bacteriophages for treatment of wound infections. Transl. Res. 2020, 220, 153–166.

    Article  CAS  PubMed  Google Scholar 

  123. Walsh, T. R.; Efthimiou, J.; Dréno, B. Systematic review of antibiotic resistance in acne: An increasing topical and oral threat. Lancet Infect. Dis. 2016, 16, e23–e33.

    Article  CAS  PubMed  Google Scholar 

  124. Thassu, D.; Chader, G. J. Ocular Drug Delivery Systems: Barriers and Application of Nanoparticulate Systems; CRC Press: Boca Raton, 2012.

    Book  Google Scholar 

  125. Thapa, R. K.; Kiick, K. L.; Sullivan, M. O. Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds. Acta Biomater. 2020, 103, 115–128.

    Article  CAS  PubMed  Google Scholar 

  126. Virgin, H. W.; Wherry, E. J.; Ahmed, R. Redefining chronic viral infection. Cell 2009, 138, 30–50.

    Article  CAS  PubMed  Google Scholar 

  127. Paterson, R. R. M.; Lima, N. Filamentous fungal human pathogens from food emphasising Aspergillus, Fusarium and Mucor. Microorganisms 2017, 5, 44.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Omar, A.; Wright, J. B.; Schultz, G.; Burrell, R.; Nadworny, P. Microbial biofilms and chronic wounds. Microorganisms 2017, 5, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Meers, P.; Neville, M.; Malinin, V.; Scotto, A. W.; Sardaryan, G.; Kurumunda, R.; Mackinson, C.; James, G.; Fisher, S.; Perkins, W. R. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 2008, 61, 859–868.

    Article  CAS  PubMed  Google Scholar 

  130. Waters, V.; Ratjen, F. Inhaled liposomal amikacin. Expert Rev. Respir. Med. 2014, 8, 401–409.

    Article  CAS  PubMed  Google Scholar 

  131. Hemmingsen, L. M.; Giordani, B.; Paulsen, M. H.; Vanić, Ž.; Flaten, G. E.; Vitali, B.; Basnet, P.; Bayer, A.; Strøm, M. B.; Škalko-Basnet, N. Tailored anti-biofilm activity—Liposomal delivery for mimic of small antimicrobial peptide. Biomater. Adv. 2023, 145, 213238.

    Article  CAS  PubMed  Google Scholar 

  132. Price, C. I.; Horton, J. W.; Baxter, C. R. Liposome encapsulation: A method for enhancing the effectiveness of local antibiotics. Surgery 1994, 115, 480–487.

    CAS  PubMed  Google Scholar 

  133. Price, C. I.; Horton, J. W.; Baxter, C. R. Topical liposomal delivery of antibiotics in soft tissue infection. J. Surg. Res. 1990, 49, 174–178.

    Article  CAS  PubMed  Google Scholar 

  134. Chang, T. M. S. Artificial cell evolves into nanomedicine, biotherapeutics, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, cell/stem cell therapy, nanoparticles, liposomes, bioencapsulation, replicating synthetic cells, cell encapsulation/scaffold, biosorbent/immunosorbent haemoperfusion/plasmapheresis, regenerative medicine, encapsulated microbe, nanobiotechnology, nanotechnology. Artif. Cells Nanomed. Biotechnol. 2019, 47, 997–1013.

    Article  CAS  PubMed  Google Scholar 

  135. Pandey, N.; Dhiman, S.; Srivastava, T.; Majumder, S. Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment. Chem. Biol. Interact. 2016, 254, 221–230.

    Article  CAS  PubMed  Google Scholar 

  136. Ai, Y. J.; Hu, Z. N.; Liang, X. P.; Sun, H. B.; Xin, H. B.; Liang, Q. L. Recent advances in nanozymes: From matters to bioapplications. Adv. Funct. Mater. 2022, 32, 2110432.

    Article  CAS  Google Scholar 

  137. Karthik, A. D.; Geetha, K. Applications of transition metal nanoparticles in antimicrobial therapy. Biomater. Tissue Eng. Bull. 2016, 3, 28–34.

    Article  Google Scholar 

  138. Bonda, D. J.; Liu, G.; Men, P.; Perry, G.; Smith, M. A.; Zhu, X. W. Nanoparticle delivery of transition-metal chelators to the brain: Oxidative stress will never see it coming! CNS Neurol. Disord. Drug Targets. 2012, 11, 81–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Molino, N. M.; Wang, S. W. Caged protein nanoparticles for drug delivery. Curr. Opin. Biotechnol. 2014, 28, 75–82.

    Article  CAS  PubMed  Google Scholar 

  140. Iqbal, H.; Yang, T.; Li, T.; Zhang, M. Y.; Ke, H. T.; Ding, D. W.; Deng, Y. B.; Chen, H. B. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release 2021, 329, 997–1022.

    Article  CAS  PubMed  Google Scholar 

  141. Wang, C. S.; Liu, C.; Luo, J. B.; Tian, Y. P.; Zhou, N. D. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2016, 936, 75–82.

    Article  ADS  CAS  PubMed  Google Scholar 

  142. Weerathunge, P.; Ramanathan, R.; Torok, V. A.; Hodgson, K.; Xu, Y.; Goodacre, R.; Behera, B. K.; Bansal, V. Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Anal. Chem. 2019, 91, 3270–3276.

    Article  CAS  PubMed  Google Scholar 

  143. He, W. W.; Zhou, Y. T.; Wamer, W. G.; Hu, X. N.; Wu, X. C.; Zheng, Z.; Boudreau, M. D.; Yin, J. J. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2013, 34, 765–773.

    Article  CAS  PubMed  Google Scholar 

  144. Ma, M.; Zhang, Y.; Gu, N. Peroxidase- like catalytic activity of cubic Pt nanocrystals. ColloiUs Surf. A: Physicochem. Eng. Aspects 2011, 373, 6–10.

    Article  CAS  Google Scholar 

  145. Cui, M. L.; Zhou, J. D.; Zhao, Y.; Song, Q. J. Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sens. Actuators B: Chem. 2017, 243, 203–210.

    Article  CAS  Google Scholar 

  146. Shen, X. M.; Liu, W. Q.; Gao, X. J.; Lu, Z. H.; Wu, X. C.; Gao, X. F. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: A general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015, 137, 15882–15891.

    Article  CAS  PubMed  Google Scholar 

  147. Glantz, M. J.; Jaeckle, K. A.; Chamberlain, M. C.; Phuphanich, S.; Recht, L.; Swinnen, L. J.; Maria, B.; LaFollette, S.; Schumann, G. B.; Cole, B. F. et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin. Cancer Res. 1999, 5, 3394–3402.

    CAS  PubMed  Google Scholar 

  148. Tian, J.; Wong, K. K. Y.; Ho, C. M.; Lok, C. N.; Yu, W. Y.; Che, C. M.; Chiu, J. F.; Tam, P. K. H. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2007, 2, 129–136.

    Article  CAS  PubMed  Google Scholar 

  149. Santoro, C. M.; Duchsherer, N. L.; Grainger, D. W. Minimal in vitro antimicrobial efficacy and ocular cell toxicity from silver nanoparticles. Nanobiotechnology 2007, 3, 55–65.

    Article  CAS  PubMed  Google Scholar 

  150. Divya, M.; Kiran, G. S.; Hassan, S.; Selvin, J. Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections. Biocatal. Agric. Biotechnol. 2019, 18, 101037.

    Article  Google Scholar 

  151. Wang, J. L.; Zhan, L. L.; Zhang, X. H.; Wu, R. F.; Liao, L.; Wei, J. C. Silver nanoparticles coated poly(L-lactide) electrospun membrane for implant associated infections prevention. Front. Pharmacol. 2020, 11, 431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. He, W. W.; Zhou, Y. T.; Wamer, W. G.; Boudreau, M. D.; Yin, J. J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 2012, 33, 7547–7555.

    Article  CAS  PubMed  Google Scholar 

  153. He, D.; Jones, A. M.; Garg, S.; Pham, A. N.; Waite, T. D. Silver nanoparticle-reactive oxygen species interactions: Application of a charging-discharging model. J. Phys. Chem. C 2011, 115, 5461–5468.

    Article  CAS  Google Scholar 

  154. Qing, Y.; Cheng, L.; Li, R. Y.; Liu, G. C.; Zhang, Y. B.; Tang, X. F.; Wang, J. C.; Liu, H.; Qin, Y. G. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomedicine 2018, 13, 3311–3327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Murray, R. G. E.; Steed, P.; Elson, H. E. The location of the mucopeptide in sections of the cell wall of escherichia coli and other gram-negative bacteria. Can. J. Microbiol. 1965, 11, 547–560.

    Article  CAS  PubMed  Google Scholar 

  156. Lancee, B. The negative side effects of vocational education: A cross-national analysis of the relative unemployment risk of young non-western immigrants in Europe. Am. Behav. Sci. 2016, 60, 659–679.

    Article  Google Scholar 

  157. Shockman, G. D.; Barrett, J. F. Structure, function, and assembly of cell walls of gram-positive bacteria. Annu. Rev. Microbiol. 1983, 37, 501–527.

    Article  CAS  PubMed  Google Scholar 

  158. Gupta, P.; Bajpai, M.; Bajpai, S. K. Investigation of antibacterial properties of silver nanoparticle-loaded poly (acrylamide-co-itaconic acid)-grafted cotton fabric. J. Cotton Sci. 2008, 12, 280–286.

    CAS  Google Scholar 

  159. Alula, M. T. Peroxidase- like activity of biosynthesized silver nanoparticles for colorimetric detection of cysteine. RSC Adv. 2023, 13, 16396–16404.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tran, H. V.; Nguyen, N. D.; Tran, C. T. Q.; Tran, L. T.; Le, T. D.; Tran, H. T. T.; Piro, B.; Huynh, C. D.; Nguyen, T. N.; Nguyen, N. T. T. et al. Silver nanoparticles-decorated reduced graphene oxide: A novel peroxidase-like activity nanomaterial for development of a colorimetric glucose biosensor. Arab. J. Chem. 2020, 13, 6084–6091.

    Article  CAS  Google Scholar 

  161. Tran, H. V.; Nguyen, T. V.; Nguyen, L. T. N.; Hoang, H. S.; Huynh, C. D. Silver nanoparticles as a bifunctional probe for label-free and reagentless colorimetric hydrogen peroxide chemosensor and cholesterol biosensor. J. Sci.: Adv. Mater. Devices 2020, 5, 385–391.

    Google Scholar 

  162. Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384.

    Article  CAS  PubMed  Google Scholar 

  163. Silver, S. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 2003, 27, 341–353.

    Article  CAS  PubMed  Google Scholar 

  164. Percival, S. L.; Bowler, P. G.; Russell, D. Bacterial resistance to silver in wound care. J. Hosp. Infect. 2005, 60, 1–7.

    Article  CAS  PubMed  Google Scholar 

  165. Shahverdi, A. R.; Fakhimi, A.; Shahverdi, H. R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed.: Nanotechnol. Biol. Med. 2007, 3, 168–171.

    Article  CAS  Google Scholar 

  166. Umapathi, A.; Nagaraju, N. P.; Madhyastha, H.; Jain, D.; Srinivas, S. P.; Rotello, V. M.; Daima, H. K. Highly efficient and selective antimicrobial isonicotinylhydrazide-coated polyoxometalate-functionalized silver nanoparticles. Colloids Surf. B: Biointerfaces 2019, 184, 110522.

    Article  CAS  PubMed  Google Scholar 

  167. Yamase, T. Anti-tumor, - viral, and - bacterial activities of polyoxometalates for realizing an inorganic drug. J. Mater. Chem. 2005, 15, 4773–4782.

    Article  CAS  Google Scholar 

  168. Lee, S. H.; Jun, B. H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu, Y. T.; Duan, Z. Q.; Xie, X. M.; Ye, X. Y. A universal strategy for the hierarchical assembly of functional 0/2D nanohybrids. Chem. Commun. 2013, 49, 1642–1644.

    Article  CAS  Google Scholar 

  170. Deshmukh, A. R.; Aloui, H.; Kim, B. S. In situ growth of gold and silver nanoparticles onto phyto-functionalized boron nitride nanosheets: Catalytic, peroxidase mimicking, and antimicrobial activity. J. Clean. Prod. 2020, 270, 122339.

    Article  CAS  Google Scholar 

  171. Hsu, C. L.; Li, Y. J.; Jian, H. J.; Harroun, S. G.; Wei, S. C.; Ravindranath, R.; Lai, J. Y.; Huang, C. C.; Chang, H. T. Green synthesis of catalytic gold/bismuth oxyiodide nanocomposites with oxygen vacancies for treatment of bacterial infections. Nanoscale 2018, 10, 11808–11819.

    Article  CAS  PubMed  Google Scholar 

  172. Deng, H. H.; Luo, B. Y.; He, S. B.; Chen, R. T.; Lin, Z.; Peng, H. P.; Xia, X. H.; Chen, W. Redox recycling-triggered peroxidase-like activity enhancement of bare gold nanoparticles for ultrasensitive colorimetric detection of rare-earth Ce3+ ion. Anal. Chem. 2019, 91, 4039–4046.

    Article  CAS  PubMed  Google Scholar 

  173. Zheng, Y. K.; Liu, W. W.; Qin, Z. J.; Chen, Y.; Jiang, H.; Wang, X. M. Mercaptopyrimidine- conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjug. Chem. 2018, 29, 3094–3103.

    Article  CAS  PubMed  Google Scholar 

  174. Lorenzana-Vázquez, G.; Pavel, I.; Meléndez, E. Gold nanoparticles functionalized with 2-thiouracil for antiproliferative and photothermal therapies in breast cancer cells. Molecules 2023, 28, 4453.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhang, S. N.; Lu, Q. J.; Wang, F. Y.; Xiao, Z. Y.; He, L. D.; He, D. G.; Deng, L. Gold- platinum nanodots with high-peroxidase-like activity and photothermal conversion efficiency for antibacterial therapy. ACS Appl. Mater. Interfaces 2021, 13, 37535–37544.

    Article  CAS  PubMed  Google Scholar 

  176. Chen, J. X.; Ma, Q.; Li, M. H.; Chao, D. Y.; Huang, L.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Glucose- oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  177. Das, R.; Dhiman, A.; Kapil, A.; Bansal, V.; Sharma, T. K. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 2019, 411, 1229–1238.

    Article  CAS  PubMed  Google Scholar 

  178. Liu, M. Y.; Zhang, F. J.; Dou, S. Y.; Sun, J. S.; Vriesekoop, F.; Li, F. L.; Guo, Y. M.; Sun, X. Label- free colorimetric apta-assay for detection of Escherichia coli based on gold nanoparticles with peroxidase-like amplification. Anal. Methods 2023, 15, 1661–1667.

    Article  CAS  PubMed  Google Scholar 

  179. Xue, J. W.; Wang, R.; Yang, J. Y.; Wang, L. X.; Cao, Y.; Li, H. D.; Yang, T.; Wang, J. H. Sensitive plasmonic ELISA assay based on butyrylcholinesterase catalyzed hydrolysis for the detection of Staphylococcus aureus. Sens. Actuators B: Chem. 2022, 365, 131948.

    Article  CAS  Google Scholar 

  180. Yao, S.; Li, J.; Pang, B.; Wang, X. C.; Shi, Y. J.; Song, X. L.; Xu, K.; Wang, J.; Zhao, C. Colorimetric immunoassay for rapid detection of Staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles. Microchim. Acta 2020, 187, 504.

    Article  CAS  Google Scholar 

  181. Aithal, S.; Mishriki, S.; Gupta, R.; Sahu, R. P.; Botos, G.; Tanvir, S.; Hanson, R. W.; Puri, I. K. SARS-CoV-2 detection with aptamer-functionalized gold nanoparticles. Talanta 2022, 236, 122841.

    Article  CAS  PubMed  Google Scholar 

  182. Ahmed, S. R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E. Y. Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol. Bioeng. 2016, 113, 2298–2303.

    Article  CAS  PubMed  Google Scholar 

  183. Jiang, T.; Song, Y.; Wei, T. X.; Li, H.; Du, D.; Zhu, M. J.; Lin, Y. H. Sensitive detection of Escherichia coli O157:H7 using Pt-Au bimetal nanoparticles with peroxidase-like amplification. Biosens. Bioelectron. 2016, 77, 687–694.

    Article  CAS  PubMed  Google Scholar 

  184. Jung, B. Y.; Jung, S. C.; Kweon, C. H. Development of a rapid immunochromatographic strip for detection of Escherichia coli O157. J. Food Prot. 2005, 68, 2140–2143.

    Article  CAS  PubMed  Google Scholar 

  185. Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132–138.

    Article  ADS  CAS  PubMed  Google Scholar 

  186. Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

    Article  CAS  PubMed  Google Scholar 

  187. Fang, G.; Li, W. F.; Shen, X. M.; Perez-Aguilar, J. M.; Chong, Y.; Gao, X. F.; Chai, Z. F.; Chen, C. Y.; Ge, C. C.; Zhou, R. H. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 2018, 9, 129.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  188. Xiang, S. J.; Fan, Z. X.; Sun, D.; Zhu, T. B.; Ming, J.; Chen, X. L. Near-infrared light enhanced peroxidase-like activity of PEGylated palladium nanozyme for highly efficient biofilm eradication. J. Biomed. Nanotechnol. 2021, 17, 1131–1147.

    Article  CAS  PubMed  Google Scholar 

  189. Guo, J. X.; Wei, W. Y.; Zhao, Y. N.; Dai, H. L. Iron oxide nanoparticles with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Regen. Biomater. 2022, 9, rbac041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Liu, C.; Zhang, M.; Geng, H. Q.; Zhang, P.; Zheng, Z.; Zhou, Y. L.; He, W. W. NIR enhanced peroxidase-like activity of Au@CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing. Appl. Catal. B: Environ. 2021, 295, 120317.

    Article  CAS  Google Scholar 

  191. Li, Z. P.; Xu, D. Q.; Deng, Z. A.; Yin, J. N.; Qian, Y. N.; Hou, J. T.; Ding, X.; Shen, J. L.; He, X. J. Single-atom-catalyzed MXene-based nanoplatform with photo-enhanced peroxidase-like activity nanotherapeutics for Staphylococcus aureus infection. Chem. Eng. J. 2023, 452, 139587.

    Article  CAS  Google Scholar 

  192. Huang, T.; Yu, Z.; Yuan, B.; Jiang, L.; Liu, Y.; Sun, X.; Liu, P.; Jiang, W.; Tang, J. Synergy of light-controlled Pd nanozymes with NO therapy for biofilm elimination and diabetic wound treatment acceleration. Mater. Today Chem. 2022, 24, 100831.

    Article  CAS  Google Scholar 

  193. Ma, M. H.; Wang, R. X.; Xu, L. N.; Du, J. J.; Xu, M.; Liu, S. J. Emerging investigator series: Enhanced peroxidase-like activity and improved antibacterial performance of palladium nanosheets by an alginate-corona. Environ. Sci.: Nano 2021, 8, 3511–3523.

    CAS  Google Scholar 

  194. Khalil, M. M. H.; Ismail, E. H.; El-Magdoub, F. Biosynthesis of Au nanoparticles using olive leaf extract: 1st Nano Updates. Arab. J. Chem. 2012, 5, 431–437.

    Article  CAS  Google Scholar 

  195. Lang, J. Y.; Ma, X. J.; Chen, P. Y.; Serota, M. D.; Andre, N. M.; Whittaker, G. R.; Yang, R. Haloprooxidaee-mimicking CeO2−x nanorods for the deactivation of human coronavirus OC43. Nanoscale 2022, 14, 3731–3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chen, J.; Zhang, S.; Chen, X.; Wang, L. Y.; Yang, W. S. A self-assembled fmoc-diphenylalanine hydrogel-encapsulated Pt nanozyme as oxidase- and peroxidase-like breaking pH limitation for potential antimicrobial application. Chem. -Eur. J. 2022, 28, e202104247.

    Article  CAS  PubMed  Google Scholar 

  197. Ranu, B. C.; Dey, R.; Chatterjee, T.; Ahammed, S. Cppprr nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective. ChemSusChem 2012, 5, 22–44.

    Article  CAS  PubMed  Google Scholar 

  198. Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Aerobic copper-catalyzed organic reactions. Chem. Rev. 2013, 113, 6234–6458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Amadine, O.; Maati, H.; Abdelouhadi, K.; Fihri, A.; El Kazzouli, S.; Len, C.; El Bouari, A.; Solhy, A. Ceria- supported copper nanoparticles: A highly efficient and recyclable catalyst for N-arylation of indole. J. Mol. Catal. A: Chem. 2014, 395, 409–419.

    Article  CAS  Google Scholar 

  200. Gu, M.; Bode, D. C.; Viles, J. H. Copper redox cycling inhibits Aβ fibre formation and promotes fibre fragmentation, while generating a dityrosine Aβ dimer. Sci. Rep. 2018, 8, 16190.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  201. Dai, X. M.; Zhao, Y.; Yu, Y. J.; Chen, X. L.; Wei, X. S.; Zhang, X. G.; Li, C. X. Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 30470–30479.

    Article  CAS  PubMed  Google Scholar 

  202. He, X. J.; Rong, S.; Jin, Y. R.; Zhang, R. P. Copper-doped melanin nanozyme with enhanced photothermal and peroxidase-like catalytic property for synergistic antimicrobial effect. Mater. Lett. 2023, 341, 134226.

    Article  CAS  Google Scholar 

  203. Pecci, L.; Montefoschi, G.; Cavallini, D. Some new details of the copper–hydrogen peroxide interaction. Biochem. Biophys. Res. Commun. 1997, 235, 264–267.

    Article  CAS  PubMed  Google Scholar 

  204. Yilmaz, S. G.; Demirbas, A.; Karaagac, Z.; Dadi, S.; Celik, C.; Yusufbeyoglu, S.; Ildiz, N.; Mandal, A. K.; Cimen, B.; Ocsoy, I. Synthesis of taurine-Cu3(PO4)2 hybrid nanoflower and their peroxidase-mimic and antimicrobial properties. J. Biotechnol. 2022, 343, 96–101.

    Article  CAS  PubMed  Google Scholar 

  205. Wang, L.; Hou, J. J.; Liu, S. Z.; Carrier, A. J.; Guo, T.; Liang, Q. S.; Oakley, D.; Zhang, X. CuO nanoparticles as haloperoxidase-mimics: Chloride-accelerated heterogeneous Cu-Fenton chemistry for H2O2 and glucose sensing. Sens. Actuators B: Chem. 2019, 287, 180–184.

    Article  CAS  Google Scholar 

  206. Zhuang, Q. Q.; Deng, Q.; He, S. B.; Chen, Q. Q.; Peng, H. P.; Deng, H. H.; Xia, X. H.; Chen, W. Bifunctional cupric oxide nanoparticle-catalyzed self-cascade oxidation reactions of ascorbic acid for bacterial killing and wound disinfection. Compos. Part B: Eng. 2021, 222, 109074.

    Article  CAS  Google Scholar 

  207. Xie, Y. X.; Qian, Y.; Li, Z. X.; Liang, Z. C.; Liu, W. F.; Yang, D. J.; Qiu, X. Q. Near-infrared- activated efficient bacteria-killing by lignin-based copper sulfide nanocomposites with an enhanced photothermal effect and peroxidase-like activity. ACS Sustain. Chem. Eng. 2021, 9, 6479–6488.

    Article  CAS  Google Scholar 

  208. Xie, Y. X.; Gan, C. C.; Li, Z. X.; Liu, W. F.; Yang, D. J.; Qiu, X. Q. Fabrication of a lignin-copper sulfide-incorporated PVA hydrogel with near-infrared-activated photothermal/photodynamic/peroxidase-like performance for combating bacteria and biofilms. ACS Biomater. Sci. Eng. 2022, 8, 560–569.

    Article  CAS  PubMed  Google Scholar 

  209. Xi, J. Q.; Wei, G.; An, L. F.; Xu, Z. B.; Xu, Z. L.; Fan, L.; Gao, L. Z. Copper/carbon hybrid nanozyme: Tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 2019, 19, 7645–7654.

    Article  ADS  CAS  PubMed  Google Scholar 

  210. Cuevas, R.; Durán, N.; Diez, M. C.; Tortella, G. R.; Rubilar, O. Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests. J. Nanomater. 2015, 2015, 789089.

    Article  Google Scholar 

  211. Ovais, M.; Khalil, A. T.; Raza, A.; Islam, N. U.; Ayaz, M.; Saravanan, M.; Ali, M.; Ahmad, I.; Shahid, M.; Shinwari, Z. K. Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl. Microbiol. Biotechnol. 2018, 102, 4393–4408.

    Article  CAS  PubMed  Google Scholar 

  212. Asghar, M.; Sajjad, A.; Hanif, S.; Ali, J. S.; Ali, Z.; Zia, M. Comparative analysis of synthesis, characterization, antimicrobial, antioxidant, and enzyme inhibition potential of roses petal based synthesized copper oxide nanoparticles. Mater. Chem. Phys. 2022, 278, 125724.

    Article  CAS  Google Scholar 

  213. Iqbal, J.; Andleeb, A.; Ashraf, H.; Meer, B.; Mehmood, A.; Jan, H.; Zaman, G.; Nadeem, M.; Drouet, S.; Fazal, H. et al. Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles. RSC Adv. 2022, 12, 14069–14083.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lim, J.; Majetich, S. A. Composite magnetic-plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today 2013, 8, 98–113.

    Article  CAS  Google Scholar 

  215. Ansari, S. M.; Bhor, R. D.; Pai, K. R.; Sen, D.; Mazumder, S.; Ghosh, K.; Kolekar, Y. D.; Ramana, C. V. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci. 2017, 414, 171–187.

    Article  ADS  CAS  Google Scholar 

  216. Shi, J. C.; Shu, R.; Shi, X. Y.; Li, Y. F.; Li, J. G.; Deng, Y.; Yang, W. Z. Multi- activity cobalt ferrite/MXene nanoenzymes for drug-free phototherapy in bacterial infection treatment. RSC Adv. 2022, 12, 11090–11099.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  217. He, S. Y.; Huang, J. Q.; Zhang, Q.; Zhao, W.; Xu, Z. A.; Zhang, W. Bamboo-like nanozyme based on nitrogen-doped carbon nanotubes encapsulating cobalt nanoparticles for wound antibacterial applications. Adv. Funct. Mater. 2021, 31, 2105198.

    Article  CAS  Google Scholar 

  218. Zhan, Y. J.; Yu, Y.; Wu, P.; Ding, P. Study on the synthesis and antibacterial activity of cobalt-metal organic framework. J. Phys.: Conf. Ser. 2022, 2393, 012034.

    Google Scholar 

  219. Lombardo Lupano, L. V.; Lázaro Martínez, J. M.; Piehl, L. L.; Rubin de Celis, E.; Campo Dall’Orto, V. Activation of H2O2 and superoxide production using a novel cobalt complex based on a polyampholyte. Appl. Catal. A: Gen. 2013, 467, 342–354.

    Article  CAS  Google Scholar 

  220. Mirhosseini, M.; Shekari-Far, A.; Hakimian, F.; Haghiralsadat, B. F.; Fatemi, S. K.; Dashtestani, F. Core-shell Au@Co-Fe hybrid nanoparticles as peroxidase mimetic nanozyme for antibacterial application. Process Biochem. 2020, 95, 131–138.

    Article  CAS  Google Scholar 

  221. Wang, Y.; Chen, C.; Zhang, D.; Wang, J. Bifunctionalized novel Co-V MMO nanowires: Intrinsic oxidase and peroxidase like catalytic activities for antibacterial application. Appl. Catal. B: Environ. 2020, 261, 118256.

    Article  CAS  Google Scholar 

  222. Liu, J. L.; Wang, Y. H.; Shen, J. H.; Liu, H.; Li, J. Q.; Wang, A. Q.; Hui, A. P.; Munir, H. A. Superoxide anion: Critical source of high performance antibacterial activity in Co-doped ZnO QDs. Ceram. Int. 2020, 46, 15822–15830.

    Article  CAS  Google Scholar 

  223. Li, D. D.; Guo, Q. Q.; Ding, L. M.; Zhang, W.; Cheng, L.; Wang, Y. Q.; Xu, Z. B.; Wang, H. H.; Gao, L. Z. Bimetallic CuCo2S4 nanozymes with enhanced peroxidase activity at neutral ph for combating burn infections. ChemBioChem 2020, 21, 2620–2627.

    Article  CAS  PubMed  Google Scholar 

  224. Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

    Article  CAS  PubMed  Google Scholar 

  225. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  CAS  PubMed  Google Scholar 

  226. Dong, H. J.; Du, W.; Dong, J.; Che, R. C.; Kong, F.; Cheng, W. L.; Ma, M.; Gu, N.; Zhang, Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 2022, 13, 5365.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  227. Kumar, R.; Sahoo, G. C.; Chawla-Sarkar, M.; Nayak, M. K.; Trivedi, K.; Rana, S.; Pandey, K.; Das, V.; Topno, R.; Das, P. Antiviral effect of glycine coated iron oxide nanoparticles iron against H1N1 influenza A virus. Int. J. Infect. Dis. 2016, 45, 281–282.

    Article  Google Scholar 

  228. Kumar, R.; Nayak, M.; Sahoo, G. C.; Pandey, K.; Sarkar, M. C.; Ansari, Y.; Das, V. N. R.; Topno, R. K.; Bhawna; Madhukar, M. et al. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J. Infect. Chemother. 2019, 25, 325–329.

    Article  CAS  PubMed  Google Scholar 

  229. Qin, T.; Ma, R. N.; Yin, Y. Y.; Miao, X. Y.; Chen, S. J.; Fan, K. L.; Xi, J. Q.; Liu, Q.; Gu, Y. H.; Yin, Y. C. et al. Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics 2019, 9, 6920–6935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Naha, P. C.; Liu, Y.; Hwang, G.; Huang, Y.; Gubara, S.; Jonnakuti, V.; Simon-Soro, A.; Kim, D.; Gao, L. Z.; Koo, H. et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 2019, 13, 4960–4971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wang, Y. Q.; Shen, X. Y.; Ma, S.; Guo, Q. Q.; Zhang, W.; Cheng, L.; Ding, L. M.; Xu, Z. B.; Jiang, J.; Gao, L. Z. Oral biofilm elimination by combining iron-based nanozymes and hydrogen peroxide-producing bacteria. Biomater. Sci. 2020, 8, 2447–2458.

    Article  CAS  PubMed  Google Scholar 

  232. Vallabani, N. V. S.; Vinu, A.; Singh, S.; Karakoti, A. Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J. ColloiU Interface Sci. 2020, 567, 154–164.

    Article  ADS  CAS  Google Scholar 

  233. Vallabani, N. V. S.; Karakoti, A. S.; Singh, S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: One step detection of blood glucose at physiological pH. Colloids Surf. B: Biointerfaces 2017, 153, 52–60.

    Article  CAS  PubMed  Google Scholar 

  234. Liu, Z. W.; Zhao, X. Y.; Yu, B. R.; Zhao, N. N.; Zhang, C.; Xu, F. J. Rough carbon-iron oxide nanohybrids for near-infrared-II light-responsive synergistic antibacterial therapy. ACS Nano 2021, 15, 7482–7490.

    Article  CAS  PubMed  Google Scholar 

  235. Zhang, W.; Hu, S. L.; Yin, J. J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.

    Article  CAS  PubMed  Google Scholar 

  236. Dacarro, G.; Taglietti, A.; Pallavicini, P. Prussian blue nanoparticles as a versatile photothermal tool. Molecules 2018, 23, 1414.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Maaoui, H.; Jijie, R.; Pan, G. H.; Drider, D.; Caly, D.; Bouckaert, J.; Dumitrascu, N.; Chtourou, R.; Szunerits, S.; Boukherroub, R. A 980 nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles. J. Colloid Interface Sci. 2016, 480, 63–68.

    Article  ADS  CAS  PubMed  Google Scholar 

  238. Chakraborty, N.; Jha, D.; Gautam, H. K.; Roy, I. Peroxidase-like behavior and photothermal effect of chitosan-coated Prussian-blue nanoparticles: Dual-modality antibacterial action with enhanced bioaffinity. Mater. Adv. 2020, 1, 774–782.

    Article  CAS  Google Scholar 

  239. Li, Y. T.; Zhu, Y.; Wang, C.; Shen, Y.; Liu, L.; Zhou, S. W.; Cui, P. F.; Hu, H. A. Z.; Jiang, P. J.; Ni, X. Y. et al. Mild hyperthermia induced by hollow mesoporous prussian blue nanoparticles in alliance with a low concentration of hydrogen peroxide shows powerful antibacterial effect. Mol. Pharm. 2022, 19, 819–830.

    Article  CAS  PubMed  Google Scholar 

  240. Gao, F.; Li, X. L.; Zhang, T. B.; Ghosal, A.; Zhang, G. F.; Fan, H. M.; Zhao, L. Y. Iron nanoparticles augmented chemodynamic effect by alternative magnetic field for wound disinfection and healing. J. Control. Release 2020, 324, 598–609.

    Article  CAS  PubMed  Google Scholar 

  241. Le, T. N.; Tran, T. D.; Kim, M. I. A convenient colorimetric bacteria detection method utilizing chitosan-coated magnetic nanoparticles. Nanomaterials 2020, 10, 92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Zakharzhevskii, M.; Drozdov, A. S.; Kolchanov, D. S.; Shkodenko, L.; Vinogradov, V. V. Test- system for bacteria sensing based on peroxidase-like activity of inkjet-printed magnetite nanoparticles. Nanomaterials 2020, 10, 313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Park, J. Y.; Jeong, H. Y.; Kim, M. I.; Park, T. J. Colorimetric detection system for Salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers. J. Nanomater. 2015, 2015, 527126.

    Article  Google Scholar 

  244. Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E. S.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.

    Article  CAS  Google Scholar 

  246. Frerichs, H.; Pütz, E.; Pfitzner, F.; Reich, T.; Gazanis, A.; Panthöfer, M.; Hartmann, J.; Jegel, O.; Heermann, R.; Tremel, W. Nanocomposite antimicrobials prevent bacterial growth through the enzyme-like activity of Bi-doped cerium dioxide (Ce1−xBixO2−δ). Nanoscale 2020, 12, 21344–21358.

    Article  CAS  PubMed  Google Scholar 

  247. Xie, J. X.; Zhang, X. D.; Wang, H.; Zheng, H. Z.; Huang, Y. M.; Xie, J. X. Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trends Anal. Chem. 2012, 39, 114–129.

    Article  CAS  Google Scholar 

  248. Chishti, B.; Fouad, H.; Seo, H. K.; Alothman, O. Y.; Ansari, Z. A.; Ansari, S. G. ATP fosters the tuning of nanostructured CeO2 peroxidase-like activity for promising antibacterial performance. New J. Chem. 2020, 44, 11291–11303.

    Article  CAS  Google Scholar 

  249. Herget, K.; Hubach, P.; Pusch, S.; Deglmann, P.; Götz, H.; Gorelik, T. E.; Gural’skiy, I. A.; Pfitzner, F.; Link, T.; Schenk, S. et al. Haloperoxidase mimicry by CeO2−x nanorods combats biofouling. AUv. Mater. 2017, 29, 1603823.

    Google Scholar 

  250. Zeng, X. L.; Wang, H. R.; Ma, Y. T.; Xu, X.; Lu, X. X.; Hu, Y. J.; Xie, J. H.; Wang, X.; Wang, Y. S.; Guo, X. L. et al. Vanadium oxide nanozymes with multiple enzyme-mimic activities for tumor catalytic therapy. ACS Appl. Mater. Interfaces 2023, 15, 13941–13955.

    CAS  Google Scholar 

  251. Ma, W. S.; Zhang, T. T.; Li, R. G.; Niu, Y. S.; Yang, X. C.; Liu, J.; Xu, Y. H.; Li, C. M. Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo. J. Colloid Interface Sci. 2020, 559, 313–323.

    Article  ADS  CAS  PubMed  Google Scholar 

  252. Wever, R.; Tromp, M. G. M.; Krenn, B. E.; Marjani, A.; Van Tol, M. Brominating activity of the seaweed ascophyllum nodosum: Impact on the biosphere. Environ. Sci. Technol. 1991, 25, 446–449.

    Article  ADS  CAS  Google Scholar 

  253. Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.

    Article  ADS  CAS  PubMed  Google Scholar 

  254. Sun, X. S.; He, X. J.; Zhu, Y.; Obeng, E.; Zeng, B. R.; Deng, H.; Shen, J. L.; Hu, R. D. Valence- switchable and biocatalytic vanadium-based MXene nanoplatform with photothermal-enhanced dual enzyme-like activities for anti-infective therapy. Chem. Eng. J. 2023, 451, 138985.

    Article  CAS  Google Scholar 

  255. Haque, S.; Tripathy, S.; Patra, C. R. Manganese- based advanced nanoparticles for biomedical applications: Future opportunity and challenges. Nanoscale 2021, 13, 16405–16426.

    Article  CAS  PubMed  Google Scholar 

  256. Wang, P.; Yang, J.; Zhou, B. Q.; Hu, Y.; Xing, L. X.; Xu, F. L.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Antifouling manganese oxide nanoparticles: Synthesis, characterization, and applications for enhanced MR imaging of tumors. ACS Appl. Mater. Interfaces 2017, 9, 47–53.

    Article  ADS  CAS  PubMed  Google Scholar 

  257. Chen, F.; Bai, M.; Cao, K.; Zhao, Y.; Wei, J.; Zhao, Y. X. Fabricating MnO2 nanozymes as intracellular catalytic DNA circuit generators for versatile imaging of base-excision repair in living cells. AUv. Funct. Mater. 2017, 27, 1702748.

    Article  Google Scholar 

  258. Han, L.; Zhang, H. J.; Chen, D. Y.; Li, F. Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: Colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Adv. Funct. Mater. 2018, 28, 1800018.

    Article  Google Scholar 

  259. Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 2019, 19, 3214–3220.

    Article  ADS  CAS  PubMed  Google Scholar 

  260. Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J. X.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Su, J.; Lyu, T.; Cooper, M.; Mortimer, R. J. G.; Pan, G. Efficient arsenic removal by a bifunctional heterogeneous catalyst through simultaneous hydrogen peroxide (H2O2) catalytic oxidation and adsorption. J. Clean. ProU. 2021, 325, 129329.

    Article  CAS  Google Scholar 

  262. Xu, W.; Sun, B. H.; Wu, F.; Mohammadniaei, M.; Song, Q. X.; Han, X.; Wang, W. T.; Zhang, M.; Zhou, N. L.; Shen, J. Manganese single-atom catalysts for catalytic-photothermal synergistic anti-infected therapy. Chem. Eng. J. 2022, 438, 135636.

    Article  CAS  Google Scholar 

  263. Liu, L.; Wang, C.; Li, Y. T.; Qiu, L.; Zhou, S. W.; Cui, P. F.; Jiang, P. J.; Ni, X. Y.; Liu, R. H.; Du, X. C. et al. Manganese dioxide nanozyme for reactive oxygen therapy of bacterial infection and wound healing. Biomater. Sci. 2021, 9, 5965–5976.

    Article  CAS  PubMed  Google Scholar 

  264. Zu, Y.; Yao, H. Q.; Wang, Y. F.; Yan, L.; Gu, Z. J.; Chen, C. Y.; Gao, L. Z.; Yin, W. Y. The age of bioinspired molybdenum-involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. View 2021, 2, 20200188.

    Article  CAS  Google Scholar 

  265. Lin, T. R.; Jiang, G. Y.; Lin, D. X.; Lai, Y. P.; Hou, L.; Zhao, S. L. Bacitracin-functionalized dextran-MoSe2 with peroxidase-like and near-infrared photothermal activities for low-temperature and synergetic antibacterial applications. ACS Appl. Bio Mater. 2022, 5, 2347–2354.

    Article  CAS  PubMed  Google Scholar 

  266. Tan, J.; Wu, S. Y.; Cai, Q. Q.; Wang, Y.; Zhang, P. Reversible regulation of enzyme-like activity of molybdenum disulfide quantum dots for colorimetric pharmaceutical analysis. J. Pharm. Anal. 2022, 12, 113–121.

    Article  PubMed  Google Scholar 

  267. Cao, M. Y.; Chang, Z. S.; Tan, J. S.; Wang, X. N.; Zhang, P. F.; Lin, S.; Liu, J. Q.; Li, A. H. Superoxide radical-mediated self-synthesized Au/MoO3−x hybrids with enhanced peroxidase-like activity and photothermal effect for anti-MRSA therapy. ACS Appl. Mater. Interfaces 2022, 14, 13025–13037.

    Article  CAS  PubMed  Google Scholar 

  268. Liao, Z. Y.; Xia, Y. M.; Zuo, J. M.; Wang, T.; Hu, D. T.; Li, M. Z.; Shao, N. N.; Chen, D.; Song, K. X.; Yu, X. et al. Metal-organic framework modified MoS2 nanozyme for synergetic combating drug-resistant bacterial infections via photothermal effect and photodynamic modulated peroxidase-mimic activity. Adv. Healthc. Mater. 2022, 11, 2101698.

    Article  CAS  Google Scholar 

  269. Sun, Y.; Xu, B. L.; Pan, X. T.; Wang, H. Y.; Wu, Q. Y.; Li, S. S.; Jiang, B. Y.; Liu, H. Y. Carbon-based nanozymes: Design, catalytic mechanism, and bioapplication. Coord. Chem. Rev. 2023, 475, 214896.

    Article  CAS  Google Scholar 

  270. Wang, H.; Li, P. H.; Yu, D. Q.; Zhang, Y.; Wang, Z. Z.; Liu, C. Q.; Qiu, H.; Liu, Z.; Ren, J. S.; Qu, X. G. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 2018, 18, 3344–3351.

    Article  ADS  CAS  PubMed  Google Scholar 

  271. Ren, C. X.; Hu, X. G.; Zhou, Q. X. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv. Sci. 2018, 5, 1700595.

    Article  Google Scholar 

  272. Yu, M. Z.; Guo, X. Z.; Lu, H. J.; Li, P. L.; Huang, R. B.; Xu, C. N.; Gong, X. D.; Xiao, Y. H.; Xing, X. D. Carbon dots derived from folic acid as an ultra-succinct smart antimicrobial nanosystem for selective killing of S. aureus and biofilm eradication. Carbon 2022, 199, 395–406.

    Article  CAS  Google Scholar 

  273. Wu, G.; Berka, V.; Derry, P. J.; Mendoza, K.; Kakadiaris, E.; Roy, T.; Kent, T. A.; Tour, J. M.; Tsai, A. L. Critical comparison of the superoxide dismutase-like activity of carbon antioxidant nanozymes by direct superoxide consumption kinetic measurements. ACS Nano 2019, 13, 11203–11213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.

    Article  ADS  CAS  Google Scholar 

  275. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  PubMed  Google Scholar 

  276. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    Article  CAS  PubMed  Google Scholar 

  277. Li, Y.; Ma, W. S.; Sun, J.; Lin, M.; Niu, Y. S.; Yang, X. C.; Xu, Y. H. Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo. Carbon 2020, 159, 149–160.

    Article  CAS  Google Scholar 

  278. Liu, Y. H.; Xu, B. L.; Lu, M. Z.; Li, S. S.; Guo, J.; Chen, F. Z.; Xiong, X. L.; Yin, Z.; Liu, H. Y.; Zhou, D. S. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing. Bioact. Mater. 2022, 12, 246–256.

    CAS  PubMed  Google Scholar 

  279. Wang, Y. H.; Yao, J. C.; Cao, Z. L.; Fu, P.; Deng, C.; Yan, S. F.; Shi, S.; Zheng, J. P. Peroxidase-mimetic copper-doped carbon-dots for oxidative stress-mediated broad-spectrum and efficient antibacterial activity. Chem. -Eur. J. 2022, 28, e202104174.

    Article  CAS  PubMed  Google Scholar 

  280. Liu, M.; Huang, L.; Xu, X. Y.; Wei, X. M.; Yang, X. F.; Li, X. L.; Wang, B. N.; Xu, Y.; Li, L. H.; Yang, Z. M. Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining. ACS Nano 2022, 16, 9479–9497.

    Article  CAS  PubMed  Google Scholar 

  281. Wang, X. L.; Lu, Y. G.; Hua, K. W.; Yang, D. Z.; Yang, Y. L. Iodine-doped carbon dots with inherent peroxidase catalytic activity for photocatalytic antibacterial and wound disinfection. Anal. Bioanal. Chem. 2021, 413, 1373–1382.

    Article  CAS  PubMed  Google Scholar 

  282. Zou, X. F.; Zhang, L.; Wang, Z. J.; Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016, 138, 2064–2077.

    Article  CAS  PubMed  Google Scholar 

  283. Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.

    Article  CAS  PubMed  Google Scholar 

  284. Chen, S.; Quan, Y.; Yu, Y. L.; Wang, J. H. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater. Sci. Eng. 2017, 3, 313–321.

    Article  CAS  PubMed  Google Scholar 

  285. Tripathi, K. M.; Ahn, H. T.; Chung, M.; Le, X. A.; Saini, D.; Bhati, A.; Sonkar, S. K.; Kim, M. I.; Kim, T.. N, S, and P-Co-doped carbon quantum dots: Intrinsic peroxidase activity in a wide pH range and its antibacterial applications. ACS Biomater. Sci. Eng. 2020, 6, 5527–5537.

    Article  CAS  PubMed  Google Scholar 

  286. Ge, Y. G.; MacDonald, D. L.; Holroyd, K. J.; Thornsberry, C.; Wexler, H.; Zasloff, M. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob. Agents Chemother. 1999, 43, 782–788.

    Article  CAS  Google Scholar 

  287. Patch, J. A.; Barron, A. E. Helical peptoid mimics of magainin-2 amide. J. Am. Chem. Soc. 2003, 125, 12092–12093.

    Article  CAS  PubMed  Google Scholar 

  288. Tew, G. N.; Scott, R. W.; Klein, M. L.; DeGrado, W. F. De novo design of antimicrobial polymers, foldamers, and small molecules: From discovery to practical applications. Acc. Chem. Res. 2010, 43, 30–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Liu, D. H.; Choi, S.; Chen, B.; Doerksen, R. J.; Clements, D. J.; Winkler, J. D.; Klein, M. L.; DeGrado, W. F. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew. Chem. 2004, 116, 1178–1182.

    Article  ADS  Google Scholar 

  290. Thoma, L. M.; Boles, B. R.; Kuroda, K. Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules 2014, 15, 2933–2943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Cheng, J. C.; Chin, W.; Dong, H. H.; Xu, L.; Zhong, G. S.; Huang, Y.; Li, L. J.; Xu, K. J.; Wu, M.; Hedrick, J. L. et al. Biodegradable antimicrobial polycarbonates with in vivo efficacy against multidrug-resistant MRSA systemic infection. Adv. Healthc. Mater. 2015, 4, 2128–2136.

    Article  CAS  PubMed  Google Scholar 

  292. Uppu, D. S. S. M.; Samaddar, S.; Hoque, J.; Konai, M. M.; Krishnamoorthy, P.; Shome, B. R.; Haldar, J. Side chain degradable cationic-amphiphilic polymers with tunable hydrophobicity show in vivo activity. Biomacromolecules 2016, 17, 3094–3102.

    Article  CAS  PubMed  Google Scholar 

  293. Konai, M. M.; Haldar, J. Fatty acid comprising lysine conjugates: Anti-MRSA agents that display in vivo efficacy by disrupting biofilms with no resistance development. Bioconjug. Chem. 2017, 28, 1194–1204.

    Article  CAS  PubMed  Google Scholar 

  294. Gao, Q.; Yu, M.; Su, Y. J.; Xie, M. H.; Zhao, X.; Li, P.; Ma, P. X. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater. 2017, 51, 112–124.

    Article  CAS  PubMed  Google Scholar 

  295. Immordino, M. L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 2006, 1, 297–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; Van Horn, B.; Guan, Z. B.; Chen, G. H.; Krishnan, R. S. General strategies for nanoparticle dispersion. Science 2006, 311, 1740–1743.

    Article  ADS  CAS  PubMed  Google Scholar 

  297. Noble, G. T.; Stefanick, J. F.; Ashley, J. D.; Kiziltepe, T.; Bilgicer, B. Ligand- targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014, 32, 32–45.

    Article  CAS  PubMed  Google Scholar 

  298. Ishida, T.; Kiwada, H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 2008, 354, 56–62.

    Article  CAS  PubMed  Google Scholar 

  299. Li, L. L.; Xu, J. H.; Qi, G. B.; Zhao, X. Z.; Yu, F. Q.; Wang, H. Core–shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano 2014, 8, 4975–4983.

    Article  CAS  PubMed  Google Scholar 

  300. Kim, J. K.; Uchiyama, S.; Gong, H.; Stream, A.; Zhang, L. F.; Nizet, V. Engineered biomimetic platelet membrane-coated nanoparticles block Staphylococcus aureus cytotoxicity and protect against lethal systemic infection. Engineering 2021, 7, 1149–1156.

    Article  CAS  Google Scholar 

  301. Wu, S.; Huang, Y.; Yan, J. C.; Li, Y. Z.; Wang, J. F.; Yang, Y. Y.; Yuan, P. Y.; Ding, X. Bacterial outer membrane-coated mesoporous silica nanoparticles for targeted delivery of antibiotic rifampicin against Gram-negative bacterial infection in vivo. Adv. Funct. Mater. 2021, 31, 2103442.

    Article  CAS  Google Scholar 

  302. Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Zhang, L. F. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015, 15, 1403–1409.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  303. Tackling drug-resistant infections globally: Final report and recommendations. The review on antimicrobial resistance; chaired by Jim O’Neill; Wellcome Trust and UK Government: London, UK, 2016.

  304. Harikrishnan, S., Jeemon, P., Mini, G. K., Thankappan, K. R., & Sylaja, P. G. B. D. (2018). GBD 2017 causes of death collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018, 392, 1736–1788.

    Article  Google Scholar 

  305. Yahav, D.; Tau, N.; Shepshelovich, D. Assessment of data supporting the efficacy of new antibiotics for treating infections caused by multidrug-resistant bacteria. Clin. Infect. Dis. 2021, 72, 1968–1974.

    Article  CAS  PubMed  Google Scholar 

  306. Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51.

    Article  CAS  PubMed  Google Scholar 

  307. Qadri, H.; Shah, A. H.; Alkhanani, M.; Almilaibary, A.; Mir, M. A. Immunotherapies against human bacterial and fungal infectious diseases: A review. Front. Med. 2023, 10, 1135541.

    Article  Google Scholar 

  308. Hamad, M. Antifungal immunotherapy and immunomodulation: A double-hitter approach to deal with invasive fungal infections. Scand. J. Immunol. 2008, 67, 533–543.

    Article  CAS  PubMed  Google Scholar 

  309. Din, F. U.; Aman, W.; Ullah, I.; Qureshi, O. S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine 2017, 12, 7291–7309.

    Article  PubMed  PubMed Central  Google Scholar 

  310. Zan, G. T.; Wu, Q. S. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 2016, 28, 2099–2147.

    Article  CAS  PubMed  Google Scholar 

  311. Papahadjopoulos, D.; Allen, T. M.; Gabizon, A.; Mayhew, E.; Matthay, K.; Huang, S. K.; Lee, K. D.; Woodle, M. C.; Lasic, D. D.; Redemann, C. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. USA 1991, 88, 11460–11464.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  312. Gubernator, J.; Drulis-Kawa, Z.; Dorotkiewicz-Jach, A.; Doroszkiewicz, W.; Kozubek, A.. In vitro antimicrobial activity of liposomes containing ciprofloxacin, meropenem and gentamicin against gram-negative clinical bacterial strains. Lett. Drug Des. Discov. 2007, 4, 297–304.

    Article  CAS  Google Scholar 

  313. Nicolosi, D.; Scalia, M.; Nicolosi, V. M.; Pignatello, R. Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria. Int. J. Antimicrob. Agents 2010, 35, 553–558.

    Article  CAS  PubMed  Google Scholar 

  314. Sachetelli, S.; Khalil, H.; Chen, T.; Beaulac, C.; Sénéchal, S.; Lagacé, J. Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells. Biochim. Biophys. Acta Biomembr. 2000, 1463, 254–266.

    Article  CAS  Google Scholar 

  315. De Jong, W. H.; Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008, 3, 133–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Yaraki, M. T.; Zahed Nasab, S.; Zare, I.; Dahri, M.; Moein Sadeghi, M.; Koohi, M.; Tan, Y. N. Biomimetic metallic nanostructures for biomedical applications, catalysis, and beyond. InU. Eng. Chem. Res. 2022, 61, 7547–7593.

    Article  CAS  Google Scholar 

  317. Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 2006, 114, 343–347.

    Article  CAS  PubMed  Google Scholar 

  318. Wang, X. Y.; Wang, H.; Zhou, S. Q. Progress and perspective on carbon-based nanozymes for peroxidase-like applications. J. Phys. Chem. Lett. 2021, 12, 11751–11760.

    Article  CAS  PubMed  Google Scholar 

  319. Singh, R.; Umapathi, A.; Patel, G.; Patra, C.; Malik, U.; Bhargava, S. K.; Daima, H. K. Nanozyme- based pollutant sensing and environmental treatment: Trends, challenges, and perspectives. Sci. Total Environ. 2023, 854, 158771.

    Article  ADS  CAS  PubMed  Google Scholar 

  320. Shan, X. T.; Gong, X.; Li, J.; Wen, J. Y.; Li, Y. P.; Zhang, Z. W. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 2022, 12, 3028–3048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Liu, C.; Luo, L. J.; Zeng, L. Y.; Xing, J.; Xia, Y. Z.; Sun, S.; Zhang, L. Y.; Yu, Z.; Yao, J. L.; Yu, Z. S. et al. Porous gold nanoshells on functional NH2-MOFs: Facile synthesis and designable platforms for cancer multiple therapy. Small 2018, 14, 1801851.

    Article  Google Scholar 

  322. Zhang, K.; Loong, S. L. E.; Connor, S.; Yu, S. W. K.; Tan, S. Y.; Ng, R. T. H.; Lee, K. M.; Canham, L.; Chow, P. K. H. Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin. Cancer Res. 2005, 11, 7532–7537.

    Article  CAS  PubMed  Google Scholar 

  323. Bonvalot, S.; Rutkowski, P. L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M. P.; Agoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M. et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): A multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019, 20, 1148–1159.

    Article  CAS  PubMed  Google Scholar 

  324. Hu, J.; Tang, F.; Wang, L. H.; Tang, M.; Jiang, Y. Z.; Liu, C. Nanozyme sensor based-on platinum-decorated polymer nanosphere for rapid and sensitive detection of Salmonella typhimurium with the naked eye. Sens. Actuators B: Chem. 2021, 346, 130560.

    Article  CAS  Google Scholar 

  325. Li, J. N.; Liu, W. Q.; Wu, X. C.; Gao, X. F. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 2015, 48, 37–44.

    Article  ADS  PubMed  Google Scholar 

  326. Liu, Y. F.; Zhang, Y. H.; Liu, Q. Y.; Wang, Q.; Lin, A. Q.; Luo, J.; Du, Y.; Lin, Y. W.; Wei, H. In vitro measurement of superoxide dismutase-like nanozyme activity: A comparative study. Analyst 2021, 146, 1872–1879.

    Article  ADS  CAS  PubMed  Google Scholar 

  327. Jin, J.; Li, L. L.; Zhang, L. H.; Luan, Z. H.; Xin, S. Q.; Song, K. Progress in the application of carbon dots-based nanozymes. Front. Chem. 2021, 9, 748044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Deng, S. Q.; Tu, Y. W.; Fu, L.; Liu, J.; Jia, L. A label-free biosensor for selective detection of Gram-negative bacteria based on the oxidase-like activity of cupric oxide nanoparticles. Microchim. Acta 2022, 189, 471.

    Article  CAS  Google Scholar 

  329. Hao, C. L.; Qu, A. H.; Xu, L. G.; Sun, M. Z.; Zhang, H. Y.; Xu, C. L.; Kuang, H. Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 2019, 141, 1091–1099.

    Article  CAS  PubMed  Google Scholar 

  330. Liu, T. F.; Xiao, B. W.; Xiang, F.; Tan, J. L.; Chen, Z.; Zhang, X. R.; Wu, C. Z.; Mao, Z. W.; Luo, G. X.; Chen, X. Y. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11, 2788.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  331. Waldmeier, P.; Sigel, H. Metal ions and hydrogen peroxide. XXVI. Kinetics and mechanism of the catalase-like activity of cobalt(III) hematoporphyrin. Inorg. Chem. 1972, 11, 2174–2180.

    Article  CAS  Google Scholar 

  332. Waldmeier, P.; Sigel, H. Inhibition of the catalase-like activity of cobalt(III)-hematoporphyrin by amino acids, adenine and related ligands stability of the inhibitor adducts. J. Inorg. Nucl. Chem. 1973, 35, 1741–1748.

    Article  CAS  Google Scholar 

  333. Bellot, F.; Hardré, R.; Pelosi, G.; Thérisod, M.; Policar, C. Superoxide dismutase-like activity of cobalt(II) complexes based on a sugar platform. Chem. Commun. 2005, 5414–5416

  334. Gao, L. Z.; Fan, K. L.; Yan, X. Y. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics 2017, 7, 3207–3227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Li, S. J.; Pang, E. N.; Gao, C.; Chang, Q.; Hu, S. L.; Li, N. Cerium-mediated photooxidation for tuning pH-dependent oxidase-like activity. Chem. Eng. J. 2020, 397, 125471.

    Article  CAS  Google Scholar 

  336. Romero, I.; Dubois, L.; Collomb, M. N.; Deronzier, A.; Latour, J. M.; Pécaut, J. A dinuclear manganese(II) complex with the 2(u-O2CCH3)3+ core: Synthesis, structure, characterization, electroinduced transformation, and catalase-like activity. Inorg. Chem. 2002, 41, 1795–1806.

    Article  CAS  PubMed  Google Scholar 

  337. Kaizer, J.; Kripli, B.; Speier, G.; Párkányi, L. Synthesis, structure, and catalase-like activity of a novel manganese(II) complex: Dichloro[1,3-bis(2 benzimidazolylimino)isoindoline]manganese(II). Polyhedron 2009, 28, 933–936.

    Article  CAS  Google Scholar 

  338. Liao, Z. R.; Zheng, X. F.; Luo, B. S.; Shen, L. R.; Li, D. F.; Liu, H. L.; Zhao, W. Synthesis, characterization and SOD-like activities of manganese-containing complexes with N,N,N′N ′-tetrakis(2 ′ -benzimidazolyl methyl)-1,2-ethanediamine (EDTB). Polyhedron 2001, 20, 2813–2821.

    Article  CAS  Google Scholar 

  339. DeFreitas-Silva, G.; Rebouças, J. S.; Spasojević, I.; Benov, L.; Idemori, Y. M.; Batinić-Haberle, I. SOD-like activity of Mn(II) β-octabromo-meso-tetrakis(N-methylpyridinium-3-yl)porphyrin equals that of the enzyme itself. Arch. Biochem. Biophys. 2008, 477, 105–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Ragg, R.; Natalio, F.; Tahir, M. N.; Janssen, H.; Kashyap, A.; Strand, D.; Strand, S.; Tremel, W. Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano 2014, 8, 5182–5189.

    Article  CAS  PubMed  Google Scholar 

  341. Niculescu, A. G.; Grumezescu, A. M. Polymer-based nanosystems—A versatile delivery approach. Materials 2021, 14, 6812.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  342. Chen, T. M.; Zou, H.; Wu, X. J.; Liu, C. C.; Situ, B.; Zheng, L.; Yang, G. W. Nanozymatic antioxidant system based on MoS2 nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 12453–12462.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Defense, Office of Naval Research (ONR award N00014-20-1-2418); National Institutes of Health, National Institute on Deafness and Other Communication Disorders (NIHDC016644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Tang, W. & Yang, R. Bioinspired nanomaterials for the treatment of bacterial infections. Nano Res. 17, 691–714 (2024). https://doi.org/10.1007/s12274-023-6283-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6283-9

Keywords

Navigation