Skip to main content
Log in

Electronic engineering of Co-Ru diatomic sites and Ru nanoparticles for synergistic promotion of hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The coexistence of multi-component active sites like single-atom sites, diatomic sites (DAS) and nanoclusters is shown to result in superior performances in the hydrogen evolution reaction (HER). Metal diatomic sites are more complex than single-atom sites but their unique electronic structures can lead to significant enhancement of the HER kinetics. Although the synthesis and identification of DAS is usually challenging, we report a simple access to a diatomic catalyst by anchoring Co-Ru DAS on nitrogen-doped carbon supports along with Ru nanoparticles (NPs). Experimental and theoretical results revealed the atomic-level characteristics of Co-Ru sites, their strong electronic coupling and their synergy with Ru NPs within the catalyst. The unique electronic structure of the catalyst resulted in an excellent HER activity and stability in alkaline media. This work provides a valuable insight into a widely applicable design of diatomic catalysts with multi-component active sites for highly efficient HER electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Q. N.; Dong, S. D.; Shao, P. P.; Zhu, Y. H.; Mu, Z. J.; Sheng, D. F.; Zhang, T.; Jiang, X.; Shao, R. W.; Ren, Z. X. et al. Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 2022, 378, 181–186.

    Article  CAS  PubMed  Google Scholar 

  2. Lv, Z. P.; Ma, W. S.; Wang, M.; Dang, J.; Jian, K. L.; Liu, D.; Huang D. J. Co- constructing interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media. Adv. Funct. Mater. 2021, 31, 2102576.

    Article  CAS  Google Scholar 

  3. Li, T.; Ren, S. Y.; Zhang, C.; Qiao, L. X.; Wu, J.; He, P.; Lin, J.; Liu, Y. S.; Fu, Z. G.; Zhu, Q. Z. et al. Cobalt single atom anchored on N-doped carbon nanoboxes as typical single-atom catalysts (SACs) for boosting the overall water splitting. Chem. Eng. J. 2023, 458, 141435.

    Article  CAS  Google Scholar 

  4. Tsounis, C.; Subhash, B.; Kumar, P. V.; Bedford, N. M.; Zhao, Y. F.; Shenoy, J.; Ma, Z. P.; Zhang, D.; Toe, C. Y.; Cheong, S. et al. Pt single atom electrocatalysts at graphene edges for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2203067.

    Article  CAS  Google Scholar 

  5. Lee, J.; Kumar, A.; Kim, M. G.; Yang, T.; Shao, X. D.; Liu, X. H.; Liu, Y.; Hong, Y.; Jadhav, A. R.; Liang, M. F. et al. Single-metal-atom dopants increase the lewis acidity of metal oxides and promote nitrogen fixation. ACS Energy Lett. 2021, 6, 4299–4308.

    Article  CAS  Google Scholar 

  6. Kumar, A.; Liu, X. H.; Lee, J.; Debnath, B.; Jadhav, A. R.; Shao, X. D.; Bui, V. Q.; Hwang, Y.; Liu, Y.; Kim, M. G. et al. Discovering ultrahigh loading of single-metal-atoms via surface tensile-strain for unprecedented urea electrolysis. Energy Environ. Sci. 2021, 14, 6494–6505.

    Article  CAS  Google Scholar 

  7. Shan, J. J.; Li, M. W.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Natuee 2017, 551, 605–608.

    Article  CAS  Google Scholar 

  8. Rocha, G. F. S. R.; da Silva, M. A. R.; Rogolino, A.; Diab, G. A. A.; Noleto, L. F. G.; Antonietti, M.; Teixeira, I. F. Carbon nitride based materials: More than just a support for single-atom catalysis. Chem. Soc. Rev. 2023, 52, 4878–4932.

    Article  CAS  PubMed  Google Scholar 

  9. Lim, J.; Back, S.; Choi, C.; Jung, Y. Ultralow overpotential of hydrogen evolution reaction using Fe-doped defective graphene: A density functional study. ChemCatChem 2018, 10, 4450–4455.

    Article  CAS  Google Scholar 

  10. He, H.; Wang, H. H.; Liu, J. J.; Liu, X. J.; Li, W. Z.; Wang, Y. N. Research progress and application of single-atom catalysts: A review. Molecules 2021, 26, 6501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

    Article  CAS  Google Scholar 

  12. Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

    Article  CAS  PubMed  Google Scholar 

  13. Leverett, J.; Daiyan, R.; Gong, L. L.; Iputera, K.; Tong, Z. Z.; Qu, J. T.; Ma, Z. P.; Zhang, Q. R.; Cheong, S.; Cairney, J. et al. Designing undercoordinated Ni-N and Fe-N on holey graphene for electrochemical CO2 conversion to syngas. ACS Nano 2021, 15, 12006–12018.

    Article  CAS  PubMed  Google Scholar 

  14. Li, Y. Z.; Wei, B.; Zhu, M. H.; Chen, J. C.; Jiang, Q. K.; Yang, B.; Hou, Y.; Lei, L. C.; Li, Z. J.; Zhang, R. F. et al. Synergistic effect of atomically dispersed Ni-Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 2021, 33, 2102212.

    Article  CAS  Google Scholar 

  15. Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

    Article  CAS  Google Scholar 

  16. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    Article  CAS  Google Scholar 

  17. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

    Article  CAS  Google Scholar 

  18. Liu, D. B.; Zhao, Y.; Wu, C. Q.; Xu, W. J.; Xi, S. B.; Chen, M. X.; Yang, L.; Zhou, Y. Z.; He, Q.; Li, X. Y. et al. Triggering electronic coupling between neighboring hetero-diatomic metal sites promotes hydrogen evolution reaction kinetics. Nano Energy 2022, 98, 107296.

    Article  CAS  Google Scholar 

  19. Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 2015, 115, 28–126.

    Article  CAS  PubMed  Google Scholar 

  20. Yan, Q. Q.; Wu, D. X.; Chu, S. Q.; Chen, Z. Q.; Lin, Y.; Chen, M. X.; Zhang, J.; Wu, X. J.; Liang, H. W. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 2019, 10, 4977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou, P.; Li, N.; Chao, Y. G.; Zhang, W. Y.; Lv, F.; Wang, K.; Yang, W. X.; Gao, P.; Guo, S. J. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem., Int. Ed. 2019, 58, 14184–14188.

    Article  CAS  Google Scholar 

  22. Han, X. P.; Ling, X. F.; Yu, D. S.; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu, W. B. Atomiaally dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.

    Article  CAS  Google Scholar 

  23. Kumar, A.; Bui, V. Q.; Lee, J.; Wang, L. L.; Jadhav, A. R.; Liu, X. H.; Shao, X. D.; Liu, Y.; Yu, J. M.; Hwang, Y. et al. Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution. Nat. Commun. 2021, 12, 6766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, J.; Liu, W.; Luo, G.; Li, Z. J.; Zhao, C.; Zhang, H. R.; Zhu, M. Z.; Xu, Q.; Wang, X. Q.; Zhao, C. M. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.

    Article  CAS  Google Scholar 

  25. Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

    Article  CAS  Google Scholar 

  26. Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976

    Article  CAS  Google Scholar 

  27. Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 2021, 6, 1054–1066.

    Article  CAS  Google Scholar 

  28. Gong, Y. N.; Cao, C. Y.; Shi, W. J.; Zhang, J. H.; Deng, J. H.; Lu, T. B.; Zhong, D. C. Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202215187.

    Article  CAS  Google Scholar 

  29. Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

    Article  CAS  Google Scholar 

  30. Liu, B. W.; Feng, R. H.; Busch, M.; Wang, S. H.; Wu, H. F.; Liu, P.; Gu, J. J.; Bahadoran, A.; Matsumura, D.; Tsuji, T. et al. Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction. ACS Nano 2022, 16, 14121–14133.

    Article  CAS  PubMed  Google Scholar 

  31. Ma, W. S.; Qiu, Z. M.; Li, J. Z.; Hu, L. W.; Li, Q.; Lv, X. W.; Dang, J. Interfacial electronic coupling of V-doped Co2P with high-entropy MXene reduces kinetic energy barrier for efficient overall water splitting. J. Energy Chem. 2023, 85, 301–309.

    Article  CAS  Google Scholar 

  32. Li, J. Z.; Chen, C.; Lv, Z. P.; Ma, W. S.; Wang, M.; Li, Q.; Dang, J. Constructing heterostructures of ZIF-67 derived C, N doped Co2P and Ti2VC2Tx MXene for enhanced OER. J. Mater. Sci. Technol. 2023, 145, 74–82.

    Article  CAS  Google Scholar 

  33. Shen, Q. K.; Jin, H. Q.; Li, P. P.; Yu, X. H.; Zheng, L. R.; Song, W. G.; Cao, C. Y. Breaking the activity limitation of iridium single-atom catalyst in hydrogenation of quinoline with synergistic nanoparticles catalysis. Nano Res. 2022, 15, 5024–5031.

    Article  CAS  Google Scholar 

  34. Yang, X. L.; Wang, Y.; Wang, X.; Mei, B. B.; Luo, E. G.; Li, Y.; Meng, Q. L.; Jin, Z.; Jiang, Z.; Liu, C. P. et al. CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanoparticles. Angew. Chem., Int. Ed. 2021, 60, 26177–26183.

    Article  CAS  Google Scholar 

  35. Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

    Article  CAS  Google Scholar 

  36. Li, J. Z.; Hou, C. Z.; Chen, C.; Ma, W. S.; Li, Q.; Hu, L. W.; Lv, X. W.; Dang J. Collaborative interface optimization strategy guided ultrafine RuCo and MXene heterostructure electrocatalysts for efficient overall water splitting. ACS Nano 2023, 17, 10947–10957.

    Article  CAS  PubMed  Google Scholar 

  37. Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

    Article  CAS  PubMed  Google Scholar 

  38. Dang, Y. L.; Wu, T. L.; Tan, H. Y.; Wang, J. L.; Cui, C.; Kerns, P.; Zhao, W.; Posada, L.; Wen, L. Y.; Suib, S. L. Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution. Energy Environ. Sci. 2021, 14, 5433–5443.

    Article  CAS  Google Scholar 

  39. Zhang, J.; Wang, M.; Gao, Z. R.; Qin, X. T.; Xu, Y.; Wang, Z. H.; Zhou, W.; Ma, D. Importance of species heterogeneity in supported metal catalysts. J. Am. Chem. Soc. 2022, 144, 5108–5115.

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Y.; Wu, J. H.; Zhang, Y. C.; Jin, X.; Li, J. M.; Xi, X. K.; Deng, Y.; Jiao, S. H.; Lei, Z. W.; Li, X. Y. et al. Ensemble effect of ruthenium single-atom and nanoparticle catalysts for efficient hydrogen evolution in neutral media. ACS Appl. Mater. Interfaces 2023, 15, 14240–14249.

    CAS  Google Scholar 

  41. Cao, D.; Wang, J. Y.; Xu, H. X.; Cheng, D. J. Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution. Small 2021, 17, 2101163.

    Article  CAS  Google Scholar 

  42. Zinin, P. V.; Ming, L. C.; Sharma, S. K.; Khabashesku, V. N.; Liu, X. R.; Hong, S. M.; Endo, S.; Acosta, T. Ultraviolet and near-infrared Raman spectroscopy of graphitic C3N4 phase. Chem. Phys. Lett. 2009, 472, 69–73.

    Article  CAS  Google Scholar 

  43. You, M. Z.; Du, X.; Hou, X. H.; Wang, Z. Y.; Zhou, Y.; Ji, H. P.; Zhang, L. Y.; Zhang, Z. T.; Yi, S. S.; Chen, D. L. In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER. Appl. Catal. B: Environ. 2022, 317, 121729.

    Article  CAS  Google Scholar 

  44. Yang, W. X.; Zhang, W. Y.; Liu, R.; Lv, F.; Chao, Y. G.; Wang, Z. C.; Guo, S. J. Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. Chin. J. Catal. 2022, 43, 110–115.

    Article  Google Scholar 

  45. Chen, J.; Ha, Y.; Wang, R. R.; Liu, Y. X.; Xu, H. B.; Shang, B.; Wu, R. B.; Pan, H. G. Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 2022, 14, 186.

    Article  CAS  Google Scholar 

  46. Chai, L. L.; Hu, Z. Y.; Wang, X.; Zhang, L. J.; Li, T. T.; Hu, Y.; Pan, J. Q.; Qian, J. J.; Huang, S. M. Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell. Carbon 2021, 174, 531–539.

    Article  CAS  Google Scholar 

  47. Qu, M. J.; Jiang, Y. M.; Yang, M.; Liu, S.; Guo, Q. F.; Shen, W.; Li, M.; He, R. X. Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting. Appl. Catal. B: Environ. 2020, 263, 118324.

    Article  CAS  Google Scholar 

  48. Feng, T. T.; Cui, Z. J.; Guo, P. F.; Wang, X. H.; Li, J.; Liu, X. E.; Wang, W. P.; Li, Z. C. Engineering Ru nanoparticles embedded in 2D N-doped carbon nanosheets decorated with 2D Fe3O4-Fe3C heterostructures for efficient hydrogen evolution in alkaline and acidic media. Int. J. Hydrogen Energy 2023, 48, 15522–15532.

    Article  CAS  Google Scholar 

  49. Shin, C. H.; Yu, T. H.; Lee, H. Y.; Lee, B. J.; Kwon, S.; Goddard III, W. A.; Yu, J. S. Ru-loaded pyrrolic-N-doped extensively graphitized porous carbon for high performance electrochemical hydrogen evolution. Appl. Catal. B: Environ. 2023, 334, 122829.

    Article  CAS  Google Scholar 

  50. Yang, L.; Huang, N.; Luo, C.; Yu, H. H.; Sun, P. P.; Lv, X. W.; Sun, X. H. Atomically dispersed and nanoscaled Co species embedded in micro-/mesoporous carbon nanosheet/nanotube architecture with enhanced oxygen reduction and evolution bifunction for Zn-air batteries. Chem. Eng. J. 2021, 404, 127112.

    Article  CAS  Google Scholar 

  51. Bao, X. B.; Chen, Y. Z.; Mao, S. J.; Wang, Y.; Yang, Y.; Gong, Y. T. Boosting the performance gain of Ru/C for hydrogen evolution reaction via surface engineering. Energy Environ. Mater. 2023, 6, e12418.

    Article  CAS  Google Scholar 

  52. Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang, H.; Su, H.; Soldatov, M. A.; Li, Y. L.; Zhao, X.; Liu, M. H.; Zhou, W. L.; Zhang, X. X.; Sun, X.; Xu, Y. Z. et al. Dynamic Co–Ru bond shrinkage at atomically dispersed Ru sites for alkaline hydrogen evolution reaction. Small 2021, 17, 2105231.

    Article  CAS  Google Scholar 

  54. Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, J. Q.; Xi, C.; Wang, M.; Shang, L.; Mao, J.; Dong, C. K.; Liu, H.; Kulinich, S. A.; Du, X. W. Laser-generated grain boundaries in ruthenium nanoparticles for boosting oxygen evolution reaction. ACS Catal. 2020, 10, 12575–12581.

    Article  CAS  Google Scholar 

  57. Su, K. Y.; Yang, S.; Yang, A. Z.; Guo, Y.; Liu, B.; Zhu, J. W.; Tang, Y. W.; Qiu, X. Y. Customizing the anisotropic electronic states of janus-distributive FeN4 and NiN4 dua—atom sites for reversible oxygen electrocatalysis. Appl. Catal. B: Environ. 2023, 331, 122694.

    Article  CAS  Google Scholar 

  58. Liu, X. H.; Zhao, F.; Jiao, L.; Fang, T. W.; Zhao, Z. Y.; Xiao, X. F.; Li, D. Y.; Yi, K.; Wang, R. J.; Jia, X. Atomically dispersed Fe/N4 and Ni/N4 sites on separate-sides of porous carbon nanosheets with janus structure for selective oxygen electrocatalysis. Small 2023, 19, 2300289.

    Article  CAS  Google Scholar 

  59. Chandrasekaran, S.; Hu, R.; Yao, L.; Sui, L. J.; Liu, Y. P.; Abdelkader, A.; Li, Y. L.; Ren, X. Z.; Deng, L. B. Mutual self-regulation of d-electrons of single atoms and adjacent nanoparticles for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Nano-Micro Lett. 2023, 15, 48.

    Article  CAS  Google Scholar 

  60. Hassan, S.; Basera, P.; Gahlawat, S.; Ingole, P. P.; Bhattacharya, S.; Sapra, S. Understanding the efficient electrocatalytic activities of MoSe2-Cu2S nanoheterostructures. J. Mater. Chem. A 2021, 9, 9837–9848.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (No. 22271203), the State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry (No. KF2021005), the Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Project of Scientific and Technologic Infrastructure of Suzhou (No. SZS201905).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongyong Cao or Jian-Ping Lang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, C., Cao, Y. et al. Electronic engineering of Co-Ru diatomic sites and Ru nanoparticles for synergistic promotion of hydrogen evolution. Nano Res. 17, 3714–3723 (2024). https://doi.org/10.1007/s12274-023-6281-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6281-y

Keywords

Navigation