Skip to main content
Log in

Fast-response, high-sensitivity multi-modal tactile sensors based on PPy/Ti3C2Tx films for multifunctional applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, multi-modal flexible tactile sensors have become an important direction in the development of electronic skin because of their excellent sensitivity, flexibility and wearable properties. In this work, a humidity-pressure multi-modal flexible sensor based on polypyrrole (PPy)/Ti3C2Tx sensitive film packaged with porous polydimethylsiloxane (PDMS) is investigated by combining the sensitive structure generation mechanism of in situ polymerization to achieve the simultaneous detection of humidity and pressure, which has a sensitivity of 89,113.4 Ω/% RH in a large humidity range of 0%–97% RH, and response/recovery time of 2.5/1.9 s. The tactile pressure sensing has a high sensitivity, a fast response of 67/52 ms, and a wide detection limit. The device also has excellent performance in terms of stability and repeatability, making it promising for respiratory pattern and motion detection. This work provides a new solution to address the construction of multi-modal tactile sensors with potential applications in the fields of medical health, epidemic prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duan, Z. H.; Jiang, Y. D.; Tai, H. L. Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 2021, 9, 14963–14980.

    Article  CAS  Google Scholar 

  2. Tai, H. L.; Duan, Z. H.; Wang, Y.; Wang, S.; Jiang, Y. D. Paper-based sensors for gas, humidity, and strain detections: A review. ACS Appl. Mater. Interfaces 2020, 12, 31037–31053.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Y. X.; Yue, Y.; Cheng, F.; Cheng, Y. F.; Ge, B. H.; Liu, N. S.; Gao, Y. H. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 2022, 16, 1734–1758.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, H.; Chen, H. M.; Lee, J. H.; Kim, E.; Chan, K. Y.; Venkatesan, H.; Adegun, M. H.; Agbabiaka, O. G.; Shen, X.; Zheng, Q. B. et al. Bioinspired chromotropic ionic skin with in-plane strain/temperature/pressure multimodal sensing and ultrahigh stimuli discriminability. Adv. Funct. Mater. 2022, 32, 2208362.

    Article  CAS  Google Scholar 

  5. Duan, Z. H.; Zhao, Q. N.; Wang, S.; Huang, Q.; Yuan, Z.; Zhang, Y. J.; Jiang, Y. D.; Tai, H. L. Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens. Actuators B: Chem. 2020, 317, 128204.

    Article  CAS  Google Scholar 

  6. Zhang, M. X.; Duan, Z. H.; Zhang, B. Y.; Yuan, Z.; Zhao, Q. N.; Jiang, Y. D.; Tai, H. L. Electrochemical humidity sensor enabled self-powered wireless humidity detection system. Nano Energy 2023, 115, 108745.

    Article  CAS  Google Scholar 

  7. Lee, J. H.; Heo, J. S.; Kim, Y. J.; Eom, J.; Jung, H. J.; Kim, J. W.; Kim, I.; Park, H. H.; Mo, H. S.; Kim, Y. H. et al. A behavior-learned cross-reactive sensor matrix for intelligent skin perception. Adv. Mater. 2020, 32, 2000969.

    Article  CAS  Google Scholar 

  8. Zhao, Q. N.; Jiang, Y. D.; Yuan, L.; Yuan, Z.; Zhang, B. Y.; Liu, B. H.; Zhang, M. X.; Huang, Q.; Duan, Z. H.; Tai, H. L. Hydrophilic hyaluronic acid-induced crumpling of Nb2CTx nanosheets: Enabling fast humidity sensing based on primary battery. Sens. Actuators B: Chem. 2023, 392, 134082

    Article  CAS  Google Scholar 

  9. Xu, L. Z.; Gutbrod, S. R.; Bonifas, A. P.; Su, Y. W.; Sulkin, M. S.; Lu, N. S.; Chung, H. J.; Jang, K. I.; Liu, Z. J.; Ying, M. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 2014, 5, 3329

    Article  PubMed  Google Scholar 

  10. Yang, R. X.; Dutta, A.; Li, B. W.; Tiwari, N.; Zhang, W. Q.; Niu, Z. Y.; Gao, Y. Y.; Erdely, D.; Xin, X.; Li, T. J. et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nat. Commun. 2023, 14, 2907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, C.; Chen, H. M.; Ding, X. H.; Lorestani, F.; Huang, C. L.; Zhang, B. W.; Zheng, B.; Wang, J.; Cheng, H. Y.; Xu, Y. Human motion-driven self-powered stretchable sensing platform based on laser-induced graphene foams. Appl. Phys. Rev. 2022, 9, 011413.

    Article  CAS  Google Scholar 

  12. Chen, X.; Li, R. Z.; Niu, G. Y.; Xin, M. Y.; Xu, G. Z.; Cheng, H. Y.; Yang, L. Porous graphene foam composite-based dual-mode sensors for underwater temperature and subtle motion detection. Chem. Eng. J. 2022, 444, 136631.

    Article  CAS  Google Scholar 

  13. Yang, C. C.; Abodurexiti, A.; Maimaitiyiming, X. Flexible humidity and pressure sensors realized by molding and inkjet printing processes with sandwich structure. Macro. Mater. Eng. 2020, 305, 2000287.

    Article  CAS  Google Scholar 

  14. Ma, Z.; Zhang, J.; Li, J. A.; Shi, Y.; Pan, L. J. Frequency-enabled decouplable dual-modal flexible pressure and temperature sensor. IEEE Electron Device Lett. 2020, 41, 1568–1571.

    Article  CAS  Google Scholar 

  15. Shin, Y. E.; Park, Y. J.; Ghosh, S. K.; Lee, Y.; Park, J.; Ko, H. Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization. Adv. Sci. 2022, 9, 2105423.

    Article  CAS  Google Scholar 

  16. Yang, G.; Tian, M. Z.; Huang, P.; Fu, Y. F.; Li, Y. Q.; Fu, Y. Q.; Wang, X. Q.; Li, Y.; Hu, N.; Fu, S. Y. Flexible pressure sensor with a tunable pressure-detecting range for various human motions. Carbon 2021, 173, 736–743.

    Article  CAS  Google Scholar 

  17. Li, J.; Fang, L. C.; Sun, B. H.; Li, X. X.; Kang, S. H. Review-recent progress in flexible and stretchable piezoresistive sensors and their applications. J. Electrochem. Soc. 2020, 167, 037561.

    Article  CAS  Google Scholar 

  18. Li, Y.; Zhao, M. J.; Yan, Y. D.; He, L. X.; Wang, Y. Y.; Xiong, Z. P.; Wang, S. Q.; Bai, Y. Y.; Sun, F. Q.; Lu, Q. F. et al. Multifunctional biomimetic tactile system via a stick-slip sensing strategy for human-machine interactions. npj Flex. Electron. 2022, 6, 46.

    Article  Google Scholar 

  19. Wang, H. B.; Xiang, Z. H.; Zhao, P. C.; Wan, J.; Miao, L. M.; Guo, H.; Xu, C.; Zhao, W.; Han, M. D.; Zhang, H. X. Double-sided wearable multifunctional sensing system with anti-interference design for human-ambience interface. ACS Nano 2022, 16, 21646–21646.

    Article  CAS  PubMed  Google Scholar 

  20. Su, P. G.; Wang, C. P. Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino) propyl] trimethyl ammonium chloride composite materials. Sens. Actuators B: Chem. 2008, 129, 538–543.

    Article  CAS  Google Scholar 

  21. Tang, X. H.; Raskin, J. P.; Kryvutsa, N.; Hermans, S.; Slobodian, O.; Nazarov, A. N.; Debliquy, M. An ammonia sensor composed of polypyrrole synthesized on reduced graphene oxide by electropolymerization. Sens. Actuators B: Chem. 2020, 305, 127423.

    Article  CAS  Google Scholar 

  22. Liu, B. H.; Liu, X. Y.; Yang, Z.; Jiang, Y. D.; Su, Y. J.; Ma, J. Y.; Tai, H. L. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens. Actuators B: Chem. 2019, 295, 86–92.

    Article  CAS  Google Scholar 

  23. Tai, H. L.; Duan, Z. H.; He, Z. Z.; Li, X.; Xu, J. L.; Liu, B. H.; Jiang, Y. D. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens. Actuators B: Chem. 2019, 298, 126874.

    Article  CAS  Google Scholar 

  24. Cheng, Y. F.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspiedd microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

    Article  CAS  PubMed  Google Scholar 

  25. Pu, J. H.; Zhao, X.; Zha, X. J.; Bai, L.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 2019, 7, 15913–15923.

    Article  CAS  Google Scholar 

  26. Wang, H. W.; Naguib, M.; Page, K.; Wesolowski, D. J.; Gogotsi, Y. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chem. Mater. 2016, 28, 349–359.

    Article  CAS  Google Scholar 

  27. Ho, D. H.; Choi, Y.; Jo, S. B.; Myoung, J. M.; Cho, J. H. Sensing with MXenes: Progress and prospects. Adv. Mater. 2021, 33, 2005846.

    Article  CAS  Google Scholar 

  28. An, H.; Habib, T.; Shah, S.; Gao, H. L.; Radovic, M.; Green, M. J.; Lutkenhaus, J. L. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018, 4, eaaq0118.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacremimetic microscale “brick-and-mortar” architecture. ACS Nano 2019, 13, 649–659.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, M. Y.; Huang, M. L.; Li, Y. Z.; Feng, Z. S.; Huang, Y.; Chen, H. J.; Xu, Z. Q.; Liu, H. G.; Wang, Y. Printing assembly of flexible devices with oxidation stable MXene for high performance humidity sensing applications. Sens. Actuators B: Chem. 2022, 364, 131867.

    Article  CAS  Google Scholar 

  32. Su, E. M.; Wu, F. M.; Zhao, S. Q.; Li, Y. T.; Deng, C. H. Layered MXene/aramid composite film for a soft and sensitive pressure sensor. ACS Appl. Mater. Interfaces 2022, 14, 15849–15858.

    Article  CAS  PubMed  Google Scholar 

  33. Luo, W. L.; Sun, Y.; Han, Y. Q.; Ding, J. X.; Li, T. X.; Hou, C. P.; Ma, Y. Flexible Ti3C2T MXene/polypyrrole composite films for high-performance all-solid asymmetric supercapacitors. Electrochim. Acta 2023, 441, 141818.

    Article  CAS  Google Scholar 

  34. Shi, X. Y.; Gao, M. H.; Hu, W. W.; Luo, D.; Hu, S. Z.; Huang, T.; Zhang, N.; Wang, Y. Largely enhanced adsorption performance and stability of MXene through in-situ depositing polypyrrole nanoparticles. Sep. Purif. Technol. 2022, 287, 120596.

    Article  CAS  Google Scholar 

  35. Yang, R. X.; Zhang, W. Q.; Tiwari, N.; Yan, H.; Li, T. J.; Cheng, H. Y. Multimodal sensors with decoupled sensing mechanisms. Adv. Sci. 2022, 9, 2202470.

    Article  Google Scholar 

  36. Li, T. K.; Chen, L. L.; Yang, X.; Chen, X.; Zhang, Z. H.; Zhao, T. T.; Li, X. F.; Zhang, J. H. A flexible pressure sensor based on an MXene-textile network structure. J. Mater. Chem. C 2019, 7, 1022–1027.

    Article  CAS  Google Scholar 

  37. Lu, Y. Y.; Yang, G.; Shen, Y. J.; Yang, H. Y.; Xu, K. C. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 2022, 14, 150.

    Article  CAS  Google Scholar 

  38. Liang, Y. N.; Ding, Q. L.; Wang, H.; Wu, Z. X.; Li, J. Y.; Li, Z. Y.; Tao, K.; Gui, X. C.; Wu, J. Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 2022, 14, 183.

    Article  CAS  Google Scholar 

  39. Fu, Y. M.; He, H. X.; Zhao, T. M.; Dai, Y. T.; Han, W. X.; Ma, J.; Xing, L. L.; Zhang, Y.; Xue, X. Y. A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application. Nano-Micro Lett. 2018, 10, 76.

    Article  Google Scholar 

  40. Kim, R. H.; Bae, M. H.; Kim, D. G.; Cheng, H. Y.; Kim, B. H.; Kim, D. H.; Li, M.; Wu, J.; Du, F.; Kim, H. S. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 2011, 11, 3881–3886.

    Article  CAS  PubMed  Google Scholar 

  41. Yang, Z. J.; Lv, S. Y.; Zhang, Y. Y.; Wang, J.; Jiang, L.; Jia, X. T.; Wang, C. G.; Yan, X.; Sun, P.; Duan, Y. et al. Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano- Micro Lett. 2022, 14, 56.

    Article  CAS  Google Scholar 

  42. Shi, J. D.; Li, X. M.; Cheng, H. Y.; Liu, Z. J.; Zhao, L. Y.; Yang, T. T.; Dai, Z. H.; Cheng, Z. G.; Shi, E. Z.; Yang, L. et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater. 2016, 26, 2078–2084.

    Article  CAS  Google Scholar 

  43. Xing, H.; Li, X.; Lu, Y. L.; Wu, Y.; He, Y.; Chen, Q. M.; Liu, Q. J.; Han, R. P. S. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators B: Chem. 2022, 361, 131704

    Article  CAS  Google Scholar 

  44. Jeong, W.; Song, J.; Bae, J.; Nandanapalli, K. R.; Lee, S. Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 2019, 11, 44758–44763.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu, Z.; Lin, W. D.; Lin, Z. Y.; Chuang, M. H.; Wu, R. J.; Chavali, M. Conductive polymer (graphene/PPy)-BiPO4 compoeite applications in humidity sensors. Polymers 2021, 13, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jia, G. W.; Zheng, A.; Wang, X.; Zhang, L.; Li, L.; Li, C. X.; Zhang, Y.; Cao, L. Y. Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor. Sens. Actuators B: Chem. 2021, 346, 130507.

    Article  CAS  Google Scholar 

  47. Niu, G. Y.; Wang, Z. H.; Xue, Y.; Yan, J. Y.; Dutta, A.; Chen, X.; Wang, Y.; Liu, C. S.; Du, S. J.; Guo, L. G. et al. Pencil-on-paper humidity sensor treated with NaCl solution for health monitoring and skin characterization. Nano Lett. 2023, 23, 1252–1260.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Y. C.; Li, X. F.; Yang, H. L.; Zhang, P.; Wang, P. H.; Sun, Y.; Yang, F. Z.; Liu, W. Y.; Li, Y. J.; Tian, Y. et al. Skin-interfaced superhydrophobic insensible sweat sensors for evaluating body thermoregulation and skin barrier functions. ACS Nano 2023, 17, 5588–5599.

    Article  CAS  PubMed  Google Scholar 

  49. Lu, Y.; Yue, Y. Y.; Ding, Q. Q.; Mei, C. T.; Xu, X. W.; Wu, Q. L.; Xiao, H. N.; Han, J. Q. Self- recovery, fatigue-resistant, and multifunctional sensor assembled by a nanocellulose/carbon nanotube nanocomplex-mediated hydrogel. ACS Appl. Mater. Interfaces 2021, 13, 50281–50297.

    Article  CAS  PubMed  Google Scholar 

  50. Chang, K. Q.; Li, L.; Zhang, C.; Ma, P. M.; Dong, W. F.; Huang, Y. P.; Liu, T. X. Compressible and robust PANI sponge anchored with erected MXene flakes for human motion detection. Composites A: Appl. Sci. Manufacturing 2021, 151, 106671.

    Article  CAS  Google Scholar 

  51. Ge, G.; Cai, Y. C.; Dong, Q. C.; Zhang, Y. Z.; Shao, J. J.; Huang, W.; Dong, X. C. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 2018, 10, 10033–10040.

    Article  CAS  PubMed  Google Scholar 

  52. Iglio, R.; Mariani, S.; Robbiano, V.; Strambini, L.; Barillaro, G. Flexible polydimethylsiloxane foams decorated with multiwalled carbon nanotubes enable unprecedented detection of ultralow strain and pressure coupled with a large working range. ACS Appl. Mater. Interfaces 2018, 10, 13877–13885.

    Article  CAS  PubMed  Google Scholar 

  53. Yang, L.; Liu, Y.; Filipe, C. D. M.; Ljubic, D.; Luo, Y. W.; Zhu, H.; Yan, J. X.; Zhu, S. P. Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyHIPE foam for pressure sensing. ACS Appl. Mater. Interfaces 2019, 11, 4318–4327.

    Article  CAS  PubMed  Google Scholar 

  54. Yang, L.; Wang, H. L.; Yuan, W. J.; Li, Y. H.; Gao, P.; Tiwari, N.; Chen, X.; Wang, Z. H.; Niu, G. Y.; Cheng, H. Y. Wearable pressure sensors based on MXene/tissue papers for wireless human health monitoring. ACS Appl. Mater. Interfaces 2021, 13, 60531–60543.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51777215), the Special Foundation of the Taishan Scholar Project (No. tsqn202211077), the Shandong Provincial Natural Science Foundation (No. ZR2023ME118), and the Natural Science Foundation of Qingdao City (No. 23-2-1-219-zyyd-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongzhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, G., Zhang, D., Tang, M. et al. Fast-response, high-sensitivity multi-modal tactile sensors based on PPy/Ti3C2Tx films for multifunctional applications. Nano Res. 17, 4410–4419 (2024). https://doi.org/10.1007/s12274-023-6276-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6276-8

Keywords

Navigation