Skip to main content
Log in

Regulate electric double layer for one-step synthesize and modulate the morphology of (oxy)hydroxides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

FeOOH have received considerable attention due to their natural abundance and cost-effectiveness. Despite the significant progress achieved, the one-step synthesis of integrated FeOOH is still a major challenge. Meanwhile, the current research on FeOOH catalyst still suffers from the unclear mechanism of controlling morphology. Here, density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) demonstrated the strong electron-capturing and hydrogen absorption ability of Co in FeOOH, which further promotes the formation and stabilization of FeOOH. We used a one-step electrodeposition method to synthesize Co introduced FeOOH integrated electrocatalyst and propose to introduce ions with different valence states to regulate the morphology of FeOOH by precise modulation of electric double layer (EDL) composition and thickness. The prepared Co-FeOOH-K+ has a larger electrochemically active surface area (ECSA) (325 cm2) and turnover frequency (TOF) value (0.75 s−1). In the electrochemical experiments of an alkaline anion exchange membrane electrolyzer, Co-FeOOH-K+ shows better oxygen evolution performance than commercial RuO2 under industrial production conditions and has good industrial application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, W. L.; Chen, Z.; Fu, Y. L.; Xiao, W. P.; Dong, B.; Chai, Y. M.; Wu, Z. X.; Wang, L. Superb all-pH hydrogen evolution performances powered by ultralow Pt-decorated hierarchical Ni-Mo porous microcolumns. Adv. Funct. Mater. 2023, 33, 2210855.

    Article  CAS  Google Scholar 

  2. He, Y. Q.; Yan, F.; Zhang, X.; Zhu, C. L.; Zhao, Y. Y.; Geng, B.; Chou, S. L.; Xie, Y.; Chen, Y. J. Creating dual active sites in conductive metal-organic frameworks for efficient water splitting. Adv. Energy Mater. 2023, 13, 2204177.

    Article  CAS  Google Scholar 

  3. Zeng, S. P.; Shi, H.; Dai, T. Y.; Liu, Y.; Wen, Z.; Han, G. F.; Wang, T. H.; Zhang, W.; Lang, X. Y.; Zheng, W. T. et al. Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nat. Commun. 2023, 14, 1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, C. Z.; Fontaine, O.; Tarascon, J. M.; Grimaud, A. Chemical recognition of active oxygen species on the surface of oxygen evolution reaction electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 8652–8656.

    Article  CAS  Google Scholar 

  5. Liao, H. X.; Ni, G. H.; Tan, P. F.; Liu, K.; Liu, X. Z.; Liu, H. L.; Chen, K. J.; Zheng, X. S.; Liu, M.; Pan, J. Oxyanion engineering suppressed iron segregation in nickel-iron catalysts toward stable water oxidation. Adv. Mater. 2023, 35, 2300347.

    Article  CAS  Google Scholar 

  6. Gan, Y. H.; Cui, M. L.; Dai, X. P.; Ye, Y.; Nie, F.; Ren, Z. T.; Yin, X. L.; Wu, B. Q.; Cao, Y. H.; Cai, R. et al. Mn-doping induced electronic modulation and rich oxygen vacancies on vertically grown NiFe2O4 nanosheet array for synergistically triggering oxygen evolution reaction. Nano Res. 2022, 15, 3940–3945.

    Article  CAS  Google Scholar 

  7. Liu, Z. Q.; Liang, X. Y.; Ma, F. X.; Xiong, Y. X.; Zhang, G. B.; Chen, G. H.; Zhen, L.; Xu, C. Y. Decoration of NiFe-LDH nanodots endows lower Fe-d band center of Fe1-N-C hollow nanorods as bifunctional oxygen electrocatalysts with small overpotential gap. Adv. Energy Mater. 2023, 13, 2203609.

    Article  CAS  Google Scholar 

  8. Nie, F.; Li, Z.; Dai, X. P.; Yin, X. L.; Gan, Y. H.; Yang, Z. H.; Wu, B. Q.; Ren, Z. T.; Cao, Y. H.; Song, W. Y. Interfacial electronic modulation on heterostructured NiSe@CoFe LDH nanoarrays for enhancing oxygen evolution reaction and water splitting by facilitating the deprotonation of OH to O. Chem. Eng. J. 2022, 431, 134080.

    Article  CAS  Google Scholar 

  9. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  CAS  PubMed  Google Scholar 

  10. Liang, Y.; Cui, Y.; Chao, Y.; Han, N.; Sunarso, J.; Liang, P.; He, X.; Zhang, C.; Liu, S. M. Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3−δ for efficient oxygen evolution reaction. Nano Res. 2022, 15, 6977–6986.

    Article  CAS  Google Scholar 

  11. Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670–8674.

    Article  CAS  Google Scholar 

  12. Wang, T. Y.; Nam, G.; Jin, Y.; Wang, X. Y.; Ren, P. J.; Kim, M. G.; Liang, J. S.; Wen, X. D.; Jang, H.; Han, J. T. et al. NiFe (Oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: The effect of surface S residues. Adv. Mater. 2018, 30, 1800757.

    Article  Google Scholar 

  13. Li, L.; Zhang, G. W.; Xu, J. W.; He, H. J.; Wang, B.; Yang, Z. M.; Yang, S. C. Optimizing the electronic structure of ruthenium oxide by neodymium doping for enhanced acidic oxygen evolution catalysis. Adv. Funct. Mater. 2023, 33, 2213304.

    Article  CAS  Google Scholar 

  14. Zhang, T. Y.; Zhao, S. C.; Zhu, C. M.; Shi, J.; Su, C.; Yang, J. W.; Wang, M.; Li, J.; Li, J. H.; Liu, P. L. et al. Rational construction of high-active Co3O4 electrocatalysts for oxygen evolution reaction. Nano Res. 2022, 16, 624–633.

    Article  Google Scholar 

  15. Wang, Q. Q.; Li, J. Q.; Li, Y. J.; Shao, G. M.; Jia, Z.; Shen, B. L. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res. 2022, 15, 8751–8759.

    Article  CAS  Google Scholar 

  16. Zhou, L.; Zhang, C.; Zhang, Y. Q.; Li, Z. H.; Shao, M. F. Host modification of layered double hydroxide electrocatalyst to boost the thermodynamic and kinetic activity of oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009743.

    Article  CAS  Google Scholar 

  17. Wen, Q. L.; Wang, S. Z.; Wang, R. W.; Huang, D. J.; Fang, J. K.; Liu, Y. W.; Zhai, T. Y. Nanopore- rich NiFe LDH targets the formation of the high-valent nickel for enhanced oxygen evolution reaction. Nano Res. 2023, 16, 2286–2293.

    Article  CAS  Google Scholar 

  18. Zhang, W. D.; Hu, Q. T.; Wang, L. L.; Gao, J.; Zhu, H. Y.; Yan, X. D.; Gu, Z. G. In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction. Appl. Catal. B Environ. 2021, 286, 119906.

    Article  CAS  Google Scholar 

  19. Shi, Y.; Zhang, D.; Miao, H. F.; Zhang, W.; Wu, X. K.; Wang, Z. C.; Li, H. D.; Zhan, T. R.; Chen, X. L.; Lai, J. P. et al. A simple, rapid and scalable synthesis approach for ultra-small size transition metal selenides with efficient water oxidation performance. J. Mater. Chem. A 2021, 9, 24261–24267.

    Article  CAS  Google Scholar 

  20. Li, F.; Du, J.; Li, X. N.; Shen, J. Y.; Wang, Y.; Zhu, Y.; Sun, L. C. Integration of FeOOH and zeolitic imidazolate framework-derived nanoporous carbon as an efficient electrocatalyst for water oxidation. Adv. Energy Mater. 2018, 8, 1702598.

    Article  Google Scholar 

  21. Cao, X. F.; Zhao, X.; Hu, J.; Chen, Z. First-principles investigation of the electronic properties of the Bi2O4(101)/BiVO4(010) heterojunction towards more efficient solar water splitting. Phys. Chem. Chem. Phys. 2020, 22, 2449–2456.

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y.; Wu, Y. Y.; Yuan, M. K.; Hao, H. R.; Lv, Z.; Xu, L. L.; Wei, B. Oprando spectroscopies unveil interfacial FeOOH induced highly reactive β-Ni(Fe)OOH for efficient oxygen evolution. Appl. Catal. B Environ. 2022, 318, 121825.

    Article  CAS  Google Scholar 

  23. Chen, J. X.; Long, Q. W.; Xiao, K.; Ouyang, T.; Li, N.; Ye, S. Y.; Liu, Z. Q. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull. 2021, 66, 1063–1072.

    Article  CAS  Google Scholar 

  24. Feng, X. T.; Jiao, Q. Z.; Chen, W. X.; Dang, Y. L.; Dai, Z.; Suib, S. L.; Zhang, J. T.; Zhao, Y.; Li, H. S.; Feng, C. H. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B Environ. 2021, 286, 119869.

    Article  CAS  Google Scholar 

  25. Zhang, H.; Shen, G. Q.; Liu, X. Y.; Ning, B.; Shi, C. X.; Pan, L.; Zhang, X. W.; Huang, Z. F.; Zou, J. J. Self-supporting NiFe LDH-MoSx integrated electrode for highly efficient water splitting at the industrial electrolysis conditions. Chin. J. Catal. 2021, 22, 1732–1741.

    Article  Google Scholar 

  26. Cai, M. M.; Zhu, Q.; Wang, X. Y.; Shao, Z. Y.; Yao, L.; Zeng, H.; Wu, X. F.; Chen, J.; Huang, K. K.; Feng, S. H. Formation and stabilization of NiOOH by introducing a-FeOOH in LDH: Composite electrocatalyst for oxygen evolution and urea oxidation reactions. Adv. Mater. 2023, 35, 2209338.

    Article  CAS  Google Scholar 

  27. Zhou, Q.; Chen, Y. P.; Zhao, G. Q.; Lin, Y.; Yu, Z. W.; Xu, X.; Wang, X. L.; Liu, H. K.; Sun, W. P.; Dou, S. X. Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction. ACS Catal. 2018, 8, 5382–5390.

    Article  CAS  Google Scholar 

  28. Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672–2676.

    Article  CAS  Google Scholar 

  29. Gao, Z. W.; Liu, J. Y.; Chen, X. M.; Zheng, X. L.; Mao, J.; Liu, H.; Ma, T.; Li, L.; Wang, W. C.; Du, X. W. Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. Adv. Mater. 2019, 31, 1804769.

    Article  Google Scholar 

  30. Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. Corrigendum: FeOOH/Co/FeOOH hybrid nanotube arrays as highperformance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 14795.

    Article  CAS  Google Scholar 

  31. Liu, J.; Zhu, D.; Zheng, Y.; Vasileff, A.; Qiao, S.-Z. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 2018, 8, 6707–6732

    Article  CAS  Google Scholar 

  32. Zhang, W.; Wu, Y. Z.; Qi, J.; Chen, M. X.; Cao, R. A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 2017, 7, 1602547.

    Article  Google Scholar 

  33. Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 2018, 9, 2373.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yan, Z. H.; Liu, H. H.; Hao, Z. M.; Yu, M.; Chen, X.; Chen, J. Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chem. Sci. 2020, 11, 10614–10625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, Q. S.; McDowell, M. T.; Qi, Y. Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 2023, 145, 2473–2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith, A. M.; Borkovec, M.; Trefalt, G. Forces between solid surfaces in aqueous electrolyte solutions. Adv. Colloid Interface Sci. 2020, 275, 102078.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, R. R.; Wang, H. F.; Du, H. R.; Yang, Y.; Gao, Z. H.; Qie, L.; Huang, Y. H. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 2022, 13, 3252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

    Article  CAS  PubMed  Google Scholar 

  39. Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

    Article  CAS  Google Scholar 

  40. Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S. H.; Lee, J. S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015, 1, 244–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816.

    Article  CAS  Google Scholar 

  42. Chen, M. X.; Li, H. J.; Wu, C. L.; Liang, Y. B.; Qi, J.; Li, J.; Shangguan, E.; Zhang, W.; Cao, R. Interfacial engineering of heterostructured Co(OH)2/NiPx nanosheets for enhanced oxygen evolution reaction. Adv. Funct. Mater. 2022, 32, 2206407.

    Article  CAS  Google Scholar 

  43. Liu, S. Q.; Dai, L. X.; Qu, Y. T.; Qiu, Y.; Fan, J. X.; Li, X.; Zhang, Q. H.; Guo, X. H. Crystalline/amorphous hetero-phase Ru nanoclusters for efficient electrocatalytic oxygen reduction and hydrogen evolution. Mater. Chem. Front. 2021, 5, 6648–6658.

    Article  CAS  Google Scholar 

  44. Liang, Y.; Wang, J.; Liu, D. P.; Wu, L.; Li, T. Z.; Yan, S. C.; Fan, Q.; Zhu, K.; Zou, Z. G. Ultrafast fenton-like reaction route to FeOOH/NiFe-LDH heterojunction electrode for efficient oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 21785–21791.

    Article  CAS  Google Scholar 

  45. Han, H. S.; Choi, H.; Mhin, S.; Hong, Y. R.; Kim, K. M.; Kwon, J.; Ali, G.; Chung, K. Y.; Je, M.; Umh, H. N. et al. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443–2454.

    Article  CAS  Google Scholar 

  46. Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

    Article  Google Scholar 

  47. Zai, S. F.; Dong, A. Q.; Li, J.; Wen, Z.; Yang, C. C.; Jiang, Q. Low-crystallinity mesoporous NiGaFe hydroxide nanosheets on macroporous Ni foam for high-efficiency oxygen evolution electrocatalysis. J. Mater. Chem. A 2021, 9, 6223–6231.

    Article  CAS  Google Scholar 

  48. Li, M. Z.; Niu, H. J.; Li, Y. L.; Liu, J. W.; Yang, X. Y.; Lv, Y. Z.; Chen, K. P.; Zhou, W. Synergetic regulation of CeO2 modification and (W2O7)2− intercalation on NiFe-LDH for high-performance large-current seawater electrooxidation. Appl. Catal. B Environ. 2023, 330, 122612.

    Article  CAS  Google Scholar 

  49. Niu, S.; Jiang, W. J.; Tang, T.; Yuan, L. P.; Luo, H.; Hu, J. S. Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation. Adv. Funct. Mater. 2019, 29, 1902180.

    Article  Google Scholar 

  50. Qiao, X. Z.; Yin, X. M.; Wen, L.; Chen, X. Y.; Li, J. M.; Ye, H. C.; Huang, X. B.; Zhao, W. D.; Wang, T. Variable nanosheets for highly efficient oxygen evolution reaction. Chem 2022, 8, 3241–3251.

    Article  CAS  Google Scholar 

  51. Shen, X. R.; Li, H. J.; Zhang, Y. Y.; Ma, T. T.; Li, Q.; Jiao, Q. Z.; Zhao, Y.; Li, H. S.; Feng, C. H. Construction dual-regulated NiCo2S4 @Mo-doped CoFe-LDH for oxygen evolution reaction at large current density. Appl. Catal. B Environ. 2022, 319, 121917.

    Article  CAS  Google Scholar 

  52. Li, X. Y.; Xiao, L. P.; Zhou, L.; Xu, Q. C.; Weng, J.; Xu, J.; Liu, B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 21106–21113.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22001143 and 52072197), the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2019KJC004), the Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), the Taishan Scholar Young Talent Program (Nos. tsqn201909114 and tsqn201909123), the Natural Science Foundation of Shandong Province (No. ZR2020YQ34), the Major Scientific and Technological Innovation Project (No. 2019JZZY020405), and the Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Lai or Lei Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Shi, Y., Gu, Y. et al. Regulate electric double layer for one-step synthesize and modulate the morphology of (oxy)hydroxides. Nano Res. 17, 3675–3683 (2024). https://doi.org/10.1007/s12274-023-6264-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6264-z

Keywords

Navigation