Skip to main content
Log in

Co2P/CoP heterostructures with significantly enhanced performance in electrocatalytic hydrogen evolution reaction: Synthesis and electron redistribution mechanism

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterostructures are often constructed to modulate the electronic states of the two catalysts, achieving high-performance in alkaline hydrogen evolution reaction (HER). Various mechanisms have been proposed for the heterostructural catalysts, which however awaits further approvement. Herein, a heterostructure composed of Co2P and CoP was successfully prepared with significantly enhanced HER catalytic activity relative to the endmembers. The ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) revealed the effective promotion of the self-driven transferring of electrons from CoP to Co2P and the accumulation of electrons on the P sites in Co2P due to the strong electronic coupling of built-in electric field in the Co2P/CoP interface. In situ electrochemical impedance spectroscopy (EIS) and poison experiments confirmed the Heyrovsky step of H* intermediate depleting on electronegative P sites and contributions of both metal and P to the reactivity in the Co2P/CoP. Density functional theory (DFT) calculations clarify that the electronic structure at interface of the heterojunction significantly weakens the hydrogen adsorption free energy (ΔGH* ads) of P site in Co2P/CoP to near zero. We also propose an electronic redistribution strategy for heterostructures that activates the multiple routes mechanism and production of more active sites. The working mechanism is expected to be further extended to other transition metal compounds for efficient HER activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohammed-Ibrahim, J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power Sources 2020, 448, 227375.

    CAS  Google Scholar 

  2. Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.

    Google Scholar 

  3. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

    CAS  Google Scholar 

  4. Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. loon-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.

    Google Scholar 

  5. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

    CAS  Google Scholar 

  6. Thalluri, S. M.; Bai, L. C.; Lv, C. C.; Huang, Z. P.; Hu, X. L.; Liu, L. F. Strategies for semiconductor/electrocatalyst coupling toward solar-driven water splitting. Adv. Sci. 2020, 7, 1902102.

    CAS  Google Scholar 

  7. Sun, X. J.; Ding, R. Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production. Catal. Sci. Technol. 2020, 10, 1567–1581.

    CAS  Google Scholar 

  8. Herraiz-Cardona, I.; González-Buch, C.; Valero-Vidal, C.; Ortega, E.; Pérez-Herranz, V. Co-modification of Ni-based type Raney electrodeposits for hydrogen evolution reaction in alkaline media. J. Power Sources 2013, 240, 698–704.

    CAS  Google Scholar 

  9. Li, F.; Zheng, W. S.; Liu, J.; Zhao, L. P.; Janackovic, D.; Qiu, Y.; Song, X. F.; Zhang, P.; Gao, L. Enhancing the long-term photoelectrochemical performance of TiO2/Si photocathodes by coating of Ti-doped mesoporous hematite. ACS Appl. Energy Mater. 2021, 4, 7882–7890.

    CAS  Google Scholar 

  10. Singh, T. I.; Rajeshkhanna, G.; Pan, U. N.; Kshetri, T.; Lin, H.; Kim, N. H.; Lee, J. H. Alkaline water splitting enhancement by MOF-derived Fe-Co-oxide/Co@NC-mNS heterostructure: Boosting OER and HER through defect engineering and in situ oxidation. Small 2021, 17, 2101312.

    CAS  Google Scholar 

  11. Chen, J. Z.; Liu, G. G.; Zhu, Y. Z.; Su, M.; Yin, P. F.; Wu, X. J.; Lu, Q. P.; Tan, C. L.; Zhao, M. T.; Liu, Z. Q. et al. Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161–7167.

    CAS  Google Scholar 

  12. Wang, Y.; Li, X. P.; Zhang, M. M.; Zhang, J. F.; Chen, Z. L.; Zheng, X. R.; Tian, Z. L.; Zhao, N. Q.; Han, X. P.; Zaghib, K. et al. Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet @ NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 2022, 34, 2107053.

    CAS  Google Scholar 

  13. Zhang, P. F.; Liu, Y. D.; Liang, T. T.; Ang, E. H.; Zhang, X.; Ma, F.; Dai, Z. F. Nitrogen-doped carbon wrapped Co-Mo2C dual Mott-Schottky nanosheets with large porosity for efficient water electrolysis. Appl. Catal. B: Environ. 2021, 284, 119738.

    CAS  Google Scholar 

  14. Li, R. Q.; Wan, X. Y.; Chen, B. L.; Cao, R. Y.; Ji, Q. H.; Deng, J.; Qu, K. G.; Wang, X. B.; Zhu, Y. C. Hierarchical Ni3N/Ni0.2Mo0.8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis. Chem. Eng. J. 2021, 409, 128240.

    CAS  Google Scholar 

  15. Xiao, Y. T.; Wang, Z. Q.; Li, L. F.; Gu, Q.; Xu, M.; Zhu, L.; Fu, X. L. Ball-milled Ni2P/g-C3N4 for improved photocatalytic hydrogen production. Int. J. Hydrogen Energy 2023, 48, 15460–15472.

    CAS  Google Scholar 

  16. Yang, L.; Huang, L. T.; Yao, Y. H.; Jiao, L. F. In-situ construction of lattice-matching NiP2/NiSe2 heterointerfaces with electron redistribution for boosting overall water splitting. Appl. Catal. B: Environ. 2021, 282, 119584.

    CAS  Google Scholar 

  17. Shi, Y. M.; Li, M. Y.; Yu, Y. F.; Zhang, B. Recent advances in nanostructured transition metal phosphides: Synthesis and energy-related applications. Energy Environ. Sci. 2020, 13, 4564–4582.

    CAS  Google Scholar 

  18. Xu, Y. L.; Wang, R.; Zheng, Y. X.; Zhang, L. H.; Jiao, T. F.; Peng, Q. M.; Liu, Z. F. Facile preparation of self-assembled Ni/Co phosphates composite spheres with highly efficient HER electrocatalytic performances. Appl. Surf. Sci. 2020, 509, 145383.

    CAS  Google Scholar 

  19. Han, Q. L.; Luo, Y. H.; Liu, G. H.; Wang, Y. J.; Li, J. D.; Chen, Z. W. Comparative study on the distinct activity for NiFe-based phosphide and sulfide pre-electrocatalysts towards hydrogen evolution reaction. J. Catal. 2022, 413, 425–433.

    CAS  Google Scholar 

  20. Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater. 2019, 31, 1800426.

    Google Scholar 

  21. Tan, J. Y.; Li, S. S.; Liu, B. L.; Cheng, H. M. Structure, preparation, and applications of 2D material-based metal-semiconductor heterostructures. Small Struct. 2021, 2, 2170001.

    CAS  Google Scholar 

  22. Cheng, F. P.; Peng, X. Y.; Hu, L. Z.; Yang, B.; Li, Z. J.; Dong, C. L.; Chen, J. L.; Hsu, L. C.; Lei, L. C.; Zheng, Q. et al. Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production. Nat. Commun. 2022, 13, 6486.

    CAS  Google Scholar 

  23. Jin, Z. Y.; Li, P. P.; Xiao, D. Metallic Co2P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall watersplitting. Green Chem. 2016, 18, 1459–1464.

    CAS  Google Scholar 

  24. Gong, W. J.; Zhang, H. Y.; Yang, L.; Yang, Y.; Wang, J. S.; Liang, H. Core@shell MOFs derived Co2P/CoP@NPGC as a highly-active bifunctional electrocatalyst for ORR/OER. J. Ind. Eng. Chem. 2022, 106, 492–502.

    CAS  Google Scholar 

  25. Riyajuddin, S.; Azmi, K.; Pahuja, M.; Kumar, S.; Maruyama, T.; Bera, C.; Ghosh, K. Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 2021, 15, 5586–5599.

    CAS  Google Scholar 

  26. Wang, T. T.; Wang, P. Y.; Zang, W. J.; Li, X.; Chen, D.; Kou, Z. K.; Mu, S. C.; Wang, J. Nanoframes of Co3O4-Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER. Adv. Funct. Mater. 2022, 32, 2107382.

    CAS  Google Scholar 

  27. Zhao, T. W.; Wang, S. H.; Li, Y. B.; Jia, C.; Su, Z.; Hao, D.; Ni, B. J.; Zhang, Q.; Zhao, C. Heterostructured V-doped Ni2P/Ni12P5 electrocatalysts for hydrogen evolution in anion exchange membrane water electrolyzers. Small 2022, 18, 2204758.

    CAS  Google Scholar 

  28. Wu, G.; Chen, W. X.; Zheng, X. S.; He, D. P.; Luo, Y. Q.; Wang, X. Q.; Yang, J.; Wu, Y. E.; Yan, W. S.; Zhuang, Z. B. et al. Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction. Nano Energy 2017, 38, 167–174.

    CAS  Google Scholar 

  29. Zhou, Q.; Liao, L. L.; Bian, Q. H.; Yu, F.; Li, D. Y.; Zeng, J. S.; Zhang, L.; Wang, H.; Tang, D. S.; Zhou, H. Q. et al. Engineering inplane nickel phosphide heterointerfaces with interfacial sp H-P hybridization for highly efficient and durable hydrogen evolution at 2 A·cm−2. Small 2022, 18, 2105642.

    CAS  Google Scholar 

  30. Wang, B. J.; Huang, F. Z.; Wu, H.; Xu, Z. J.; Wang, S. P.; Han, Q. H.; Liu, F. H.; Li, S. K.; Zhang, H. Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott-Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res. 2023, 16, 4160–4169.

    CAS  Google Scholar 

  31. Liu, L. Z.; Zhang, Y. H.; Huang, H. W. Junction engineering for photocatalytic and photoelectrocatalytic CO2 reduction. Solar RRL 2021, 5, 2000430.

    CAS  Google Scholar 

  32. Sun, L.; Xu, H. Z.; Cheng, Z. Y.; Zheng, D. H.; Zhou, Q. N.; Yang, S. K.; Lin, J. J. A heterostructured WS2/WSe2 catalyst by heterojunction engineering towards boosting hydrogen evolution reaction. Chem. Eng. J. 2022, 443, 136348.

    CAS  Google Scholar 

  33. Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

    CAS  Google Scholar 

  34. Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

    CAS  Google Scholar 

  35. Men, Y.; Li, P.; Zhou, J. H.; Cheng, G. Z.; Chen, S. L.; Luo, W. Tailoring the electronic structure of Co2P by N doping for boosting hydrogen evolution reaction at all pH values. ACS Catal. 2019, 9, 3744–3752.

    CAS  Google Scholar 

  36. Li, S. S.; Wang, L.; Su, H.; Hong, A. N.; Wang, Y. X.; Yang, H. J.; Ge, L.; Song, W. Y.; Liu, J.; Ma, T. Y. et al. Electron redistributed S-doped nickel iron phosphides derived from one-step phosphatization of MOFs for significantly boosting electrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2200733.

    CAS  Google Scholar 

  37. Zheng, F. Q.; Zhang, Z. W.; Zhang, C. M.; Chen, W. Advanced electrocatalysts based on metal-organic frameworks. ACS Omega 2020, 5, 2495–2502.

    CAS  Google Scholar 

  38. Mo, Q. J.; Zhang, W. B.; He, L. Q.; Yu, X.; Gao, Q. S. Bimetallic Ni2−xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Appl. Catal. B: Environ. 2019, 244, 620–627.

    CAS  Google Scholar 

  39. Zhang, H. J.; Maijenburg, A. W.; Li, X. P.; Schweizer, S. L.; Wehrspohn, R. B. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 2020, 30, 2003261.

    CAS  Google Scholar 

  40. Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.

    CAS  Google Scholar 

  41. Zhao, D.; Sun, K. A.; Cheong, W. C.; Zheng, L. R.; Zhang, C.; Liu, S. J.; Cao, X.; Wu, K. L.; Pan, Y.; Zhuang, Z. W. et al. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution. Angew. Chem., Int. Ed. 2020, 59, 8982–8990.

    CAS  Google Scholar 

  42. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  43. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  44. Chung, D. Y.; Jun, S. W.; Yoon, G.; Kim, H.; Yoo, J. M.; Lee, K. S.; Kim, T.; Shin, H.; Sinha, A. K.; Kwon, S. G. et al. Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. J. Am. Chem. Soc. 2017, 139, 6669–6674.

    CAS  Google Scholar 

  45. Yang, H. Q.; Wang, B. D.; Kou, S. Q.; Lu, G. L.; Liu, Z. N. Mott–Schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery. Chem. Eng. J. 2021, 425, 131589.

    CAS  Google Scholar 

  46. Xu, R. R.; Jiang, T. F.; Fu, Z.; Cheng, N. Y.; Zhang, X. X.; Zhu, K.; Xue, H. G.; Wang, W. J.; Tian, J. Q.; Chen, P. Ion-exchange controlled surface engineering of cobalt phosphide nanowires for enhanced hydrogen evolution. Nano Energy 2020, 78, 105347.

    CAS  Google Scholar 

  47. Tian, L. H.; Yan, X. D.; Chen, X. J.; Liu, L.; Chen, X. B. One-pot, large-scale, simple synthesis of CoxP nanocatalysts for electrochemical hydrogen evolution. J. Mater. Chem. A 2016, 4, 13011–13016.

    CAS  Google Scholar 

  48. Diao, F. Y.; Huang, W.; Ctistis, G.; Wackerbarth, H.; Yang, Y.; Si, P. C.; Zhang, J. D.; Xiao, X. X.; Engelbrekt, C. Bifunctional and self-supported NiFeP-layer-coated NiP rods for electrochemical water splitting in alkaline solution. ACS Appl. Mater. Interfaces 2021, 13, 23702–23713.

    CAS  Google Scholar 

  49. Ding, X. D.; Huang, H. T.; Wan, Q.; Guan, X.; Fang, Y. X.; Lin, S.; Chen, D. Y.; Xie, Z. L. Self-template synthesis of hollow Fe-doped CoP prisms with enhanced oxygen evolution reaction activity. J. Energy Chem. 2021, 62, 415–422.

    CAS  Google Scholar 

  50. Liu, G.; Li, N.; Zhao, Y.; Yao, R.; Wang, M. H.; He, D. Y.; Li, J. P. Fabrication of Fe-doped Co2P nanoparticles as efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. Electrochim. Acta 2018, 283, 1490–1497.

    CAS  Google Scholar 

  51. Cheng, M.; Fan, H. S.; Xu, Y. Y.; Wang, R. M.; Zhang, X. X. Hollow Co2P nanoflowers assembled from nanorods for ultralong cycle-life supercapacitors. Nanoscale 2017, 9, 14162–14171.

    CAS  Google Scholar 

  52. Zhou, Q. X.; Sun, R. X.; Ren, Y. P.; Tian, R.; Yang, J.; Pang, H.; Huang, K.; Tian, X. L.; Xu, L.; Tang, Y. W. Reactive template-derived interfacial engineering of CoP/CoO heterostructured porous nanotubes towards superior electrocatalytic hydrogen evolution. Carbon Energy 2023, 5, e273.

    CAS  Google Scholar 

  53. Fu, Q.; Wang, X. J.; Han, J. C.; Zhong, J.; Zhang, T. R.; Yao, T.; Xu, C. Y.; Gao, T. L.; Xi, S. B.; Liang, C. et al. Phase-junction electrocatalysts towards enhanced hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 259–267.

    CAS  Google Scholar 

  54. Qin, M. L.; Chen, L. L.; Zhang, H. M.; Humayun, M.; Fu, Y. J.; Xu, X. F.; Xue, X. Y.; Wang, C. D. Achieving highly efficient pH-universal hydrogen evolution by Mott-Schottky heterojunction of Co2P/Co4N. Chem. Eng. J. 2023, 454, 140230.

    CAS  Google Scholar 

  55. Gu, C. J.; Zhou, G. Y.; Yang, J.; Pang, H.; Zhang, M. Y.; Zhao, Q.; Gu, X. F.; Tian, S.; Zhang, J. B.; Xu, L. et al. NiS/MoS2 Mott’Schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production. Chem. Eng. J. 2022, 443, 136321.

    CAS  Google Scholar 

  56. Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Y. Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B: Environ. 2020, 262, 118245.

    CAS  Google Scholar 

  57. Liu, H. T.; Guan, J. Y.; Yang, S. X.; Yu, Y. H.; Shao, R.; Zhang, Z. P.; Dou, M. L.; Wang, F.; Xu, Q. Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 2020, 32, 2003649.

    CAS  Google Scholar 

  58. Xu, Y. C.; Wei, S. T.; Gan, L. F.; Zhang, L.; Wang, F.; Wu, Q.; Cui, X. Q.; Zheng, W. T. Amorphous carbon interconnected ultrafine CoMnP with enhanced Co electron delocalization yields Pt-like activity for alkaline water electrolysis. Adv. Funct. Mater. 2022, 32, 2112623.

    CAS  Google Scholar 

  59. Wang, L.; Wu, H. J.; Xi, S. B.; Chua, S. T.; Wang, F. H.; Pennycook, S. J.; Yu, Z. G.; Du, Y. H.; Xue, J. M. Nitrogen-doped cobalt phosphide for enhanced hydrogen evolution activity. ACS Appl. Mater. Interfaces 2019, 11, 17359–17367.

    CAS  Google Scholar 

  60. Xue, Z. H.; Su, H.; Yu, Q. Y.; Zhang, B.; Wang, H. H.; Li, X. H.; Chen, J. S. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 2017, 7, 1602355.

    Google Scholar 

  61. Liu, Y. H.; Ding, J.; Li, F. H.; Su, X. Z.; Zhang, Q. T.; Guan, G. J.; Hu, F. X.; Zhang, J. C.; Wang, Q. L.; Jiang, Y. C. et al. Modulating hydrogen adsorption via charge transfer at the semiconductor-metal heterointerface for highly efficient hydrogen evolution catalysis. Adv. Mater. 2023, 35, 2207114.

    CAS  Google Scholar 

  62. Yu, X. W.; Zhao, J.; Johnsson, M. Interfacial engineering of nickel hydroxide on cobalt phosphide for alkaline water electrocatalysis. Adv. Funct. Mater. 2021, 31, 2101578.

    CAS  Google Scholar 

  63. Cui, Z. P.; Sheng, W. C. Thoughts about choosing a proper counter electrode. ACS Catal. 2023, 13, 2534–2541.

    CAS  Google Scholar 

  64. Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373–382.

    CAS  Google Scholar 

  65. Yan, P.; Yang, T.; Lin, M. X.; Guo, Y. N.; Qi, Z. P.; Luo, Q. Q.; Yu, X. Y. “One stone five birds” plasma activation strategy synergistic with ru single atoms doping boosting the hydrogen evolution performance of metal hydroxide. Adv. Funct. Mater. 2023, 33, 2301343

    CAS  Google Scholar 

  66. Sung, Y. E.; Chrzanowski, W.; Zolfaghari, A.; Jerkiewicz, G.; Wieckowski, A. Structure of chemisorbed sulfur on a Pt(111) electrode. J. Am. Chem. Soc. 1997, 119, 194–200.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the fundings from the National Natural Science Foundation of China (Nos. 51972210, 52111530187, and 82172443) and Medical-Engineering Funding of Shanghai Jiao Tong University (No. YG2021QN91). The authors also thank Dr. Yanqi Yuan and Dr. Wangshu Zheng for their help with the characterization analysis and the Instrumental Analysis Center of Shanghai Jiao Tong University for access to XRD, SEM, and TEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Liu or Peng Zhang.

Electronic Supplementary Material

12274_2023_6228_MOESM1_ESM.pdf

Co2P/CoP heterostructures with significantly enhanced performance in electrocatalytic hydrogen evolution reaction: Synthesis and electron redistribution mechanism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Zhong, B., Li, F. et al. Co2P/CoP heterostructures with significantly enhanced performance in electrocatalytic hydrogen evolution reaction: Synthesis and electron redistribution mechanism. Nano Res. 16, 12830–12839 (2023). https://doi.org/10.1007/s12274-023-6228-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6228-3

Keywords

Navigation